The Representation of Atmospheric Blocking and the Associated Low-Frequency Variability in Two Seasonal Prediction Systems

Panos J. Athanasiadis CMCC, Bologna, Italy

Search for other papers by Panos J. Athanasiadis in
Current site
Google Scholar
PubMed
Close
,
Alessio Bellucci CMCC, Bologna, Italy

Search for other papers by Alessio Bellucci in
Current site
Google Scholar
PubMed
Close
,
Leon Hermanson Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Leon Hermanson in
Current site
Google Scholar
PubMed
Close
,
Adam A. Scaife Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Adam A. Scaife in
Current site
Google Scholar
PubMed
Close
,
Craig MacLachlan Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Craig MacLachlan in
Current site
Google Scholar
PubMed
Close
,
Alberto Arribas Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Alberto Arribas in
Current site
Google Scholar
PubMed
Close
,
Stefano Materia CMCC, Bologna, Italy

Search for other papers by Stefano Materia in
Current site
Google Scholar
PubMed
Close
,
Andrea Borrelli CMCC, Bologna, Italy

Search for other papers by Andrea Borrelli in
Current site
Google Scholar
PubMed
Close
, and
Silvio Gualdi CMCC, and INGV-CMCC, Bologna, Italy

Search for other papers by Silvio Gualdi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Primarily as a response to boundary forcings, certain components of the atmospheric intraseasonal variability are potentially predictable. Particularly referring to the extratropics, the current generation of seasonal forecasting systems is making advancements in predicting these components by realistically initializing many components of the climate system, using higher resolution and utilizing large ensemble sizes.

The operational seasonal prediction system of the Met Office (UKMO) and the corresponding system of the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The UKMO system achieves unprecedented high scores in predicting the winter mean phase of the North Atlantic Oscillation (NAO; correlation 0.62) and the Pacific–North American pattern (PNA; correlation 0.82). The CMCC system, despite its smaller ensemble size and coarser resolution, also exhibits significant skill (0.42 for NAO, 0.51 for PNA). Low-frequency variability is underrepresented in both models, particularly in the eastern North Atlantic. Consequently, their intrinsic variability patterns (sectoral EOFs) are somewhat different from the observed patterns.

Regarding the representation of wintertime Northern Hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. The blocking signature on the circulation and the dependence of blocking frequency on the NAO are also quite realistic for both systems. Finally, the Met Office system exhibits significant skill in predicting the winter mean frequency of blocking that relates to the NAO.

Corresponding author address: Dr. P. Athanasiadis, Centro Euro-Mediterraneo sui Cambiamenti Climatici, Viale Aldo Moro, 44, I-40127 Bologna, Italy. E-mail: panos.athanasiadis@cmcc.it

Abstract

Primarily as a response to boundary forcings, certain components of the atmospheric intraseasonal variability are potentially predictable. Particularly referring to the extratropics, the current generation of seasonal forecasting systems is making advancements in predicting these components by realistically initializing many components of the climate system, using higher resolution and utilizing large ensemble sizes.

The operational seasonal prediction system of the Met Office (UKMO) and the corresponding system of the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The UKMO system achieves unprecedented high scores in predicting the winter mean phase of the North Atlantic Oscillation (NAO; correlation 0.62) and the Pacific–North American pattern (PNA; correlation 0.82). The CMCC system, despite its smaller ensemble size and coarser resolution, also exhibits significant skill (0.42 for NAO, 0.51 for PNA). Low-frequency variability is underrepresented in both models, particularly in the eastern North Atlantic. Consequently, their intrinsic variability patterns (sectoral EOFs) are somewhat different from the observed patterns.

Regarding the representation of wintertime Northern Hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. The blocking signature on the circulation and the dependence of blocking frequency on the NAO are also quite realistic for both systems. Finally, the Met Office system exhibits significant skill in predicting the winter mean frequency of blocking that relates to the NAO.

Corresponding author address: Dr. P. Athanasiadis, Centro Euro-Mediterraneo sui Cambiamenti Climatici, Viale Aldo Moro, 44, I-40127 Bologna, Italy. E-mail: panos.athanasiadis@cmcc.it
Save
  • Anstey, J. A., and Coauthors, 2013: Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution. J. Geophys. Res., 118, 39563971, doi:10.1002/jgrd.50231.

    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, doi:10.1175/2009JAS3270.1.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, and I. T. Jolliffe, 2009: Spatial weighting and iterative projection methods for EOFs. J. Climate, 22, 234243, doi:10.1175/2008JCLI2147.1.

    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, J. F. González-Rouco, and R. M. Trigo, 2010: Application of blocking diagnosis methods to general circulation models. Part II: Model simulations. Climate Dyn., 35, 13931409, doi:10.1007/s00382-010-0766-6.

    • Search Google Scholar
    • Export Citation
  • Borrelli, A., S. Materia, A. Bellucci, and S. Gualdi, 2012: Seasonal prediction system at CMCC. Centro Euro-Mediterraneo sui Cambiamenti Climatici Res. Pap. 147, 17 pp. [Available online at http://www.cmcc.it/publications-meetings/publications/research-papers/rp0147-seasonal-prediction-system-at-cmcc.]

  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buehler, T., C. C. Raible, and T. F. Stocker, 2011: The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus, 63A, 212222, doi:10.1111/j.1600-0870.2010.00492.x.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 1999: Influence of the North Atlantic SST on the atmospheric circulation. Geophys. Res. Lett., 26, 29692972, doi:10.1029/1999GL900613.

    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, doi:10.1175/JCLI-D-12-00032.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 15671586, doi:10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., and S.-W. Son, 2013: Northern Hemisphere blocking frequency and duration in the CMIP5 models. J. Geophys. Res. Atmos., 118, 11791188, doi:10.1002/jgrd.50143.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., A. A. Scaife, J. Lindesay, and D. B. Stephenson, 2012: How potentially predictable is northern European winter climate a season ahead? Int. J. Climatol., 32, 801818, doi:10.1002/joc.2314.

    • Search Google Scholar
    • Export Citation
  • Håkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Atmospheric blocking and Atlantic multidecadal ocean variability. Science,334, 655–659, doi:10.1126/science.1205683.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Johansson, A., 2007: Prediction skill of the NAO and PNA from daily to seasonal time scales. J. Climate, 20, 19571975, doi:10.1175/JCLI4072.1.

    • Search Google Scholar
    • Export Citation
  • Johansson, A., A. Barnston, S. Saha, and H. van den Dool, 1998: On the level and origin of seasonal forecast skill in northern Europe. J. Atmos. Sci., 55, 103127, doi:10.1175/1520-0469(1998)055<0103:OTLAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313328, doi:10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, doi:10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maidens, A., A. Arribas, A. A. Scaife, C. MacLachlan, D. Peterson, and J. Knight, 2013: The influence of surface forcings on prediction of the North Atlantic Oscillation regime of winter 2010/11. Mon. Wea. Rev., 141, 38013813, doi:10.1175/MWR-D-13-00033.1.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881, doi:10.1175/JCLI3826.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001. North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol.,21, 1863–1898, doi:10.1002/joc.693.

  • Masato, G., B. J. Hoskins, and T. Woollings, 2012: Wave-breaking characteristics of midlatitude blocking. Quart. J. Roy. Meteor. Soc., 138, 12851296, doi:10.1002/qj.990.

    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Climate, 26, 70447059, doi:10.1175/JCLI-D-12-00466.1.

    • Search Google Scholar
    • Export Citation
  • Materia, S., A. Borrelli, A. Bellucci, A. Alessandri, P. Di Pietro, P. J. Athanasiadis, S. Gualdi, and A. Navarra, 2014: Impact of atmosphere and land surface initial conditions on seasonal forecast of global surface temperature. J. Climate, doi:10.1175/JCLI-D-14-00163.1, in press.

    • Search Google Scholar
    • Export Citation
  • Pavan, V., S. Tibaldi, and Č. Branković, 2000: Seasonal prediction of blocking frequency: Results from winter ensemble experiments. Quart. J. Roy. Meteor. Soc., 126, 21252142, doi:10.1002/qj.49712656708.

    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755, doi:10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., and J. M. Wallace, 1996: Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124, 20712076, doi:10.1175/1520-0493(1996)124<2071:RBNPWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., A. H. Butler, J. C. Furtado, J. L. Cohen, and A. Kumar, 2013: CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Climate Dyn., 41, 10991116, doi:10.1007/s00382-013-1850-5.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794, doi:10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., T. Woollings, J. Knight, G. Martin, and T. Hinton, 2010: Atmospheric blocking and mean biases in climate models. J. Climate, 23, 61436152, doi:10.1175/2010JCLI3728.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2011: Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett.,38, L23703, doi:10.1029/2011GL049573.

  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett.,41, 2514–2519, doi:10.1002/2014GL059637.

  • Scherrer, S. C., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, 2006: Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., 26, 233249, doi:10.1002/joc.1250.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and K. C. Mo, 1983: Seasonal and geographical variation of blocking. Mon. Wea. Rev., 111, 388402, doi:10.1175/1520-0493(1983)111<0388:SAGVOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761, doi:10.1002/qj.49710946204.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., V. Pavan, and R. Bojariu, 2000: Is the North Atlantic Oscillation a random walk? Int. J. Climatol., 20, 118, doi:10.1002/(SICI)1097-0088(200001)20:1<1::AID-JOC456>3.0.CO;2-P.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2002: Dynamical aspects of extratropical tropospheric low-frequency variability. J. Climate, 15, 21452162, doi:10.1175/1520-0442(2002)015<2145:DAOETL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Search Google Scholar
    • Export Citation
  • Tyrlis, V., and B. J. Hoskins, 2008: Aspects of a Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65, 16381652, doi:10.1175/2007JAS2337.1.

    • Search Google Scholar
    • Export Citation
  • Vial, J., and T. J. Osborn, 2012: Assessment of atmosphere–ocean general circulation model simulations of winter Northern Hemisphere atmospheric blocking. Climate Dyn., 39, 95112, doi:10.1007/s00382-011-1177-z.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. J. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, doi:10.1175/2007JAS2347.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. J. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 370 111 9
PDF Downloads 237 83 8