An Isentropic Analysis of the Temporal Evolution of East Asian Cold Air Outbreaks

Takamichi Shoji Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Takamichi Shoji in
Current site
Google Scholar
PubMed
Close
,
Yuki Kanno Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Yuki Kanno in
Current site
Google Scholar
PubMed
Close
,
Toshiki Iwasaki Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Search for other papers by Toshiki Iwasaki in
Current site
Google Scholar
PubMed
Close
, and
Koutarou Takaya Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto, Japan

Search for other papers by Koutarou Takaya in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The equatorward cold airmass flux below potential temperature θT = 280 K across 45°N integrated from 90°E to 180° is used as an index to quantitatively measure cold air outbreaks (CAOs) in the East Asian winter monsoon. Intermittent CAOs over East Asia significantly contribute to the global equatorward cold airmass flux. An autocorrelation analysis indicates that CAO events persist for approximately 5 days. The geographical distributions of lagged correlations/regressions with the CAO index (CAOI) clarify the temporal evolution of synoptic conditions associated with CAOs. The developing Siberian high located northwest of Lake Baikal (65°N, 100°E) on day −4 slowly moves southeastward, reaches maximum intensity over Siberia (50°N, 110°E) on day 0, and then decays while moving rapidly southward. By contrast, the Aleutian low is almost stagnant and maintains a strong intensity. The eastward pressure gradient geostrophically induces the equatorward cold airmass flux. After day −2, the cold air mass significantly decreases over Siberia, but increases over East Asia and the western North Pacific Ocean. The cold air mass continues to migrate southward while spreading eastward, and disappears mainly over the ocean. The leading edge of the high pressure anomaly moves southward at 13 m s−1 and reaches the equator simultaneously with the equatorward wind anomaly on about day +4. An additional analysis of separating the equatorward flux into 90°–135°E and 135°E–180° suggests that CAOs are, to some extent, caused by the Siberian high and the Aleutian low acting separately.

Denotes Open Access content.

Corresponding author address: Toshiki Iwasaki, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan. E-mail: iwasaki@wind.gp.tohoku.ac.jp

Abstract

The equatorward cold airmass flux below potential temperature θT = 280 K across 45°N integrated from 90°E to 180° is used as an index to quantitatively measure cold air outbreaks (CAOs) in the East Asian winter monsoon. Intermittent CAOs over East Asia significantly contribute to the global equatorward cold airmass flux. An autocorrelation analysis indicates that CAO events persist for approximately 5 days. The geographical distributions of lagged correlations/regressions with the CAO index (CAOI) clarify the temporal evolution of synoptic conditions associated with CAOs. The developing Siberian high located northwest of Lake Baikal (65°N, 100°E) on day −4 slowly moves southeastward, reaches maximum intensity over Siberia (50°N, 110°E) on day 0, and then decays while moving rapidly southward. By contrast, the Aleutian low is almost stagnant and maintains a strong intensity. The eastward pressure gradient geostrophically induces the equatorward cold airmass flux. After day −2, the cold air mass significantly decreases over Siberia, but increases over East Asia and the western North Pacific Ocean. The cold air mass continues to migrate southward while spreading eastward, and disappears mainly over the ocean. The leading edge of the high pressure anomaly moves southward at 13 m s−1 and reaches the equator simultaneously with the equatorward wind anomaly on about day +4. An additional analysis of separating the equatorward flux into 90°–135°E and 135°E–180° suggests that CAOs are, to some extent, caused by the Siberian high and the Aleutian low acting separately.

Denotes Open Access content.

Corresponding author address: Toshiki Iwasaki, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan. E-mail: iwasaki@wind.gp.tohoku.ac.jp
Save
  • Chang, C.-P., and K. M. Lau, 1982: Short-term planetary-scale interactions over the tropics and midlatitudes during northern winter. Part I: Contrasts between active and inactive periods. Mon. Wea. Rev., 110, 933946, doi:10.1175/1520-0493(1982)110<0933:STPSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. E. Erickson, and K. M. Lau, 1979: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part I: Synoptic aspects. Mon. Wea. Rev., 107, 812829, doi:10.1175/1520-0493(1979)107<0812:NCSANE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., W.-R. Huang, and J.-H. Yoon, 2004: Interannual variation of the East Asian cold surge activity. J. Climate, 17, 401413, doi:10.1175/1520-0442(2004)017<0401:IVOTEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., G. N. Kiladis, and P. J. Webster, 1999: The horizontal and vertical structure of East Asian winter monsoon pressure surge. Quart. J. Roy. Meteor. Soc., 125, 2954, doi:10.1002/qj.49712555304.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1990: Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteor. Atmos. Phys., 44, 281292, doi:10.1007/BF01026822.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and T. N. Krishnamurti, 1987: Heat budget of the Siberian high and the winter monsoon. Mon. Wea. Rev., 115, 24282449, doi:10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2001: Subtropical cold surges: Regional aspects and global distribution. Int. J. Climatol., 21, 11811197, doi:10.1002/joc.687.

    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., S.-W. Wang, and J.-H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076, doi:10.1029/2000GL012311.

    • Search Google Scholar
    • Export Citation
  • Huang, R. H., J. L. Chen, L. Wang, and Z. D. Lin, 2012: Characteristics, processes and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910942, doi:10.1007/s00376-012-2015-x.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1989: A diagnostic formulation for wave-mean flow interaction and Lagrangian-mean circulation with a hybrid vertical coordinate of pressure and isentropes. J. Meteor. Soc. Japan, 67, 293312.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 1992: General circulation diagnosis in the pressure-isentrope hybrid vertical coordinate. J. Meteor. Soc. Japan, 70, 673687.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., and Y. Mochizuki, 2012: Mass-weighted isentropic zonal mean equatorward flow in the Northern Hemispheric winter. SOLA, 8, 115118, doi:10.2151/sola.2012-029.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, M. Ujiie, and K. Takaya, 2014: Isentropic analysis of polar cold air mass streams in the Northern Hemispheric winter. J. Atmos. Sci., 71, 2230–2243, doi:10.1175/JAS-D-13-058.1.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., and C.-H. Ho, 2005: Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, L14704, doi:10.1029/2005GL023024.

    • Search Google Scholar
    • Export Citation
  • Jhun, J. G., and E. J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711726, doi:10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., 2001: A generalization of the transformed Eulerian-mean meridional circulation. Quart. J. Roy. Meteor. Soc., 127, 147160, doi:10.1002/qj.49712757109.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., I. N. James, and M. Blackburn, 1994: The influence of the Antarctica on the momentum budget of the southern extratropics. Quart. J. Roy. Meteor. Soc., 120, 10171044, doi:10.1002/qj.49712051811.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and K.-M. Lau, 1984: The structure and energetics of midlatitude disturbances accompanying cold-air outbreaks over East Asia. Mon. Wea. Rev., 112, 13091327, doi:10.1175/1520-0493(1984)112<1309:TSAEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and S. Yang, 2010: A dynamical index for East Asian winter monsoon. J. Climate, 23, 42554262, doi:10.1175/2010JCLI3375.1.

  • Murakami, T., and H. Nakamura, 1983: Orographic effects on cold surges and lee-cyclogenesis as revealed by a numerical experiment. 2. Transient aspects. J. Meteor. Soc. Japan, 61, 547567.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Park, T.-W., C.-H. Ho, S. Yang, and J.-H. Jeong, 2010: Influence of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009-2010. J. Geophys. Res., 115, D23122, doi:10.1029/2010JD014794.

    • Search Google Scholar
    • Export Citation
  • Ryoo, S.-B., W.-T. Kwon, and J.-G. Jhun, 2005: Surface and upper-level features associated with wintertime cold surge outbreaks in South Korea. Adv. Atmos. Sci., 22, 509524, doi:10.1007/BF02918484.

    • Search Google Scholar
    • Export Citation
  • Sumi, A., 1985: A study on cold surges around the Tibetan Plateau by using numerical models. J. Meteor. Soc. Japan, 63, 377396.

  • Takaya, K., and H. Nakamura, 2005a: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, doi:10.1175/JAS3629.1.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005b: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci., 62, 44414449, doi:10.1175/JAS3628.1.

    • Search Google Scholar
    • Export Citation
  • Tanaka, D., T. Iwasaki, S. Uno, M. Ujiie, and K. Miyazaki, 2004: Eliassen–Palm flux diagnosis based on isentropic representation. J. Atmos. Sci., 61, 23702383, doi:10.1175/1520-0469(2004)061<2370:EFDBOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Townsend, R. D., and D. R. Johnson, 1985: A diagnostic study of the isentropic zonally averaged mass circulation during the First GARP Global Experiment. J. Atmos. Sci., 42, 15651579, doi:10.1175/1520-0469(1985)042<1565:ADSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: How well do existing indices measure the strength of the East Asian winter monsoon? Adv. Atmos. Sci., 27, 855870, doi:10.1007/s00376-009-9094-3.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate, 27, 23612374, doi:10.1175/JCLI-D-13-00086.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, and R. Huang, 2009: Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway. J. Climate, 22, 600614, doi:10.1175/2008JCLI2295.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, doi:10.1029/2002GL015373.

    • Search Google Scholar
    • Export Citation
  • Wu, M. C., and J. C. L. Chan, 1995: Surface features of winter monsoon surges over south China. Mon. Wea. Rev., 123, 662680, doi:10.1175/1520-0493(1995)123<0662:SFOWMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshikane, T., and F. Kimura, 2008: Formation mechanism of an intensified cold air mass in the middle troposphere over east Siberia in December 2005 using a regional climate model. J. Meteor. Soc. Japan, 86, 773785, doi:10.2151/jmsj.86.773.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, doi:10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 589 245 44
PDF Downloads 531 188 11