• Beck, C., J. Grieser, and B. Rudolf, 2005: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Climate status report 2004, German Weather Service Rep., 181–190.

  • Hickey, J. R., L. L. Stowe, H. Jacobowitz, P. Pellegrino, R. H. Maschhoff, F. House, and T. H. Vonder Haar, 1980: Initial solar irradiance determinations from Nimbus 7 cavity radiometer measurements. Science, 208, 281281.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation data sets. Bull. Amer. Meteor. Soc., 78, 520.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, doi:10.1029/2011JD017139.

    • Search Google Scholar
    • Export Citation
  • Kalnay, and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208.

  • Kopp, G., and J. L. Lean, 2011: A new low value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, doi:10.1029/2010GL045777.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in global surface air temperature. Theor. Appl. Climatol., 41, 1121.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110–113, doi:10.1038/NGEO1375.

    • Search Google Scholar
    • Export Citation
  • McLinden, C. A., S. C. Olsen, B. Hannegan, O. Wild, M. J. Prather, and J. Sundet, 2000: Stratospheric ozone in 3-D models: A simple chemistry and cross-tropopause flux. J. Geophys. Res., 105 (D11), 14 65314 655.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, N. K. Balachandran, and M. J. Prather, 1990: Climate change and the middle atmosphere. Part I: The doubled CO2 climate. J. Atmos. Sci., 47, 475494.

    • Search Google Scholar
    • Export Citation
  • Rind, D., D. Shindell, J. Perlwitz, J. Lerner, P. Lonergan, J. Lean, and C. McLinden, 2004: The relative importance of solar and anthropogenic forcing of climate change between the Maunder Minimum and the present. J. Climate, 17, 906929.

    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Perlwitz, and P. Lonergan, 2005: AO/NAO response to climate change: 1. Respective influences of stratospheric and tropospheric climate changes. J. Geophys. Res., 110, D12107, doi:10.1029/2004JD005103.

    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Lerner, J. Jonas, and C. McLinden, 2007: The effects of resolution and model physics on tracer transports in the NASA Goddard Institute for Space Studies general circulation models. J. Geophys. Res., 112, D09315, doi:10.1029/2006JD007476.

    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Lean, J. Lerner, P. Lonergan, and A. Leboissitier, 2008: Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res., 113, D24103, doi:10.1029/2008JD010114.

    • Search Google Scholar
    • Export Citation
  • Rottman, G. J., T. N. Woods, and V. L. George, 2005: The Solar Radiation and Climate Experiment (SORCE). Sol. Phys., 230, 360417.

  • Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies. Atmos. Ocean, 33, 683730.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., 1986: Climatological Atlas: 1950-1979. NCAR Tech. Note NCAR/TN-269+STR, 35 pp. and 10 microfiche.

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • WMO, 2011: Scientific assessment of ozone depletion: 2010. World Meteorological Organization Global Ozone Research and Monitoring Project Rep. 52, 517 pp.

  • Yao, M.-S., and A. Del Genio, 1999: Effects of cloud parameterization on the simulation of climate changes in the GISS GCM. J. Climate,12, 761–779.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 540 326 11
PDF Downloads 326 185 3

The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations

View More View Less
  • 1 NASA GISS, New York, New York
  • | 2 Space Science Division, Naval Research Laboratory, Washington D.C.
  • | 3 Columbia University, New York, New York
Restricted access

Abstract

Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.4°C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model’s depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.

Corresponding author address: Judith L. Lean, Space Science Division, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375. E-mail: judith.lean@nrl.navy.mil

Abstract

Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.4°C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model’s depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.

Corresponding author address: Judith L. Lean, Space Science Division, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375. E-mail: judith.lean@nrl.navy.mil
Save