• Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett.,39, L09712, doi:10.1029/2012GL051607.

  • Bender, F. A. M., 2011: Planetary albedo in strongly forced climate, as simulated by the CMIP3 models. Theor. Appl. Climatol., 105, 529535, doi:10.1007/s00704-011-0411-2.

    • Search Google Scholar
    • Export Citation
  • Bony, S., J.-L. Dufresne, H. Le Treut, J.-J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186, doi:10.1007/s00382-003-0369-6.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate,19, 3445–3482.

  • Broccoli, A., K. Dahl, and R. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic intertropical convergence zone to Last Glacial Maximum boundary conditions. Paleoceanography, 18, 1094, doi:10.1029/2003PA000916.

    • Search Google Scholar
    • Export Citation
  • Codron, F., 2012: Ekman heat transport for slab oceans. Climate Dyn., 38, 379389, doi:10.1007/s00382-011-1031-3.

  • Crueger, T., B. Stevens, and R. Brokopf, 2013: The Madden–Julian oscillation in ECHAM6 and the introduction of an objective MJO metric. J. Climate,26, 3241–3257.

  • Cvijanovic, I., and J. C. H. Chiang, 2013: Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Climate Dyn., 40, 14351452, doi:10.1007/s00382-012-1482-1.

    • Search Google Scholar
    • Export Citation
  • Cvijanovic, I., P. L. Langen, E. Kaas, and P. D. Ditlevsen, 2013: Southward intertropical convergence zone shifts and implications for an atmospheric bipolar seesaw. J. Climate, 26, 41214137.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418.

  • Donohoe, A., D. M. Frierson, and D. S. Battisti, 2013a: The effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments. Climate Dyn., doi:10.1007/s00382-013-1843-4.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. Mcgee, 2013b: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate,26, 3597–3618.

  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720730.

    • Search Google Scholar
    • Export Citation
  • Fuĉkar, N. S., S.-P. Xie, R. Farneti, E. A. Maroon, and D. M. W. Frierson, 2013: Influence of the extratropical ocean circulation on the intertropical convergence zone in an idealized coupled general circulation model. J. Climate,26, 4612–4629.

  • Hatzianastassiou, N., A. Fotiadi, C. Matsoukas, K. Pavlakis, E. Drakakis, D. Hatzidimitriou, and I. Vardavas, 2004a: Long-term global distribution of Earth’s shortwave radiation budget at the top of atmosphere. Atmos. Chem. Phys., 4, 12171235, doi:10.5194/acp-4-1217-2004.

    • Search Google Scholar
    • Export Citation
  • Hatzianastassiou, N., C. Matsoukas, D. Hatzidimitriou, C. Pavlakis, M. Drakakis, and I. Vardavas, 2004b: Ten year radiation budget of the earth: 1984–93. Int. J. Climatol., 24, 17851802, doi:10.1002/joc.1110.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere–ocean. J. Atmos. Sci., 58, 943948.

    • Search Google Scholar
    • Export Citation
  • Holbourn, A., W. Kuhnt, M. Regenberg, M. Schulz, A. Mix, and N. Andersen, 2010: Does Antarctic glaciation force migration of the tropical rain belt? Geology, 38, 783786, doi:10.1130/G31043.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett.,37, L24807, doi:10.1029/2010GL045440.

  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 4935–4940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Jayne, S., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411, doi:10.1029/2000RG000084.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827.

    • Search Google Scholar
    • Export Citation
  • Kato, S., 2009: Interannual variability of the global radiation budget. J. Climate, 22, 48934907.

  • Langen, P. L., R. G. Graversen, and T. Mauritsen, 2012: Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet. J. Climate,25, 3010–3024.

  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748–766.

    • Search Google Scholar
    • Export Citation
  • Lucarini, V., and F. Ragone, 2011: Energetics of climate model: Net energy balance and meridional enthalp transport. Rev. Geophys.,49, RG1001, doi:10.1029/2009RG000323.

  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2013: The ocean's role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., doi:10.1007/s00382-013-1767-z, in press.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., R. G. Graversen, D. Klocke, P. L. Langen, B. Stevens, and L. Tomassini, 2013: Climate feedback efficiency and synergy. Climate Dyn., 41, 25392554, doi:10.1007/s00382-013-1808-7.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., J. Sanjay, B. B. B. Booth, K. Krishna Kumar, and R. A. Betts, 2012: The influence of vegetation on the ITCZ and South Asian monsoon in HadCM3. Earth Syst. Dyn., 3, 8796, doi:10.5194/esd-3-87-2012.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2011: A model investigation of aerosol-induced changes in tropical circulation. J. Climate,24, 5125–5133.

  • Möbis, B., and B. Stevens, 2012: Factors controlling the position of the ITCZ on an aquaplanet. J. Adv. Model. Earth Syst., 4, M00A04, doi:10.1029/2012MS000199.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Department Tech. Memo. 206, 41 pp.

  • Pahnke, K., J. P. Sachs, L. Keigwin, A. Timmermann, and S.-P. Xie, 2007: Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones. Paleoceanography, 22, PA4214, doi:10.1029/2007PA001468.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806.

  • Pierrehumbert, R. T., D. Abbot, A. Voigt, and D. Koll, 2011: Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci., 39, 417460, doi:10.1146/annurev-earth-040809-152447.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1987: The role of Earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92 (D4), 40754095, doi:10.1029/JD092iD04p04075.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and D. Ferreira, 2013: Ocean heat transport and water vapor greenhouse in a warm equable climate: A new look at the low gradient paradox. J. Climate, 26, 2117–2136.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: The atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146–172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712716, doi:10.1073/pnas.1116706108.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., M. Crucifix, P. Braconnot, C. D. Hewitt, C. Doutriaux, A. J. Broccoli, J. F. B. Mitchell, and M. J. Webb, 2007: Estimating shortwave radiative forcing and response in climate models. J. Climate, 20, 25302543.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Voigt, A., and D. S. Abbot, 2012: Sea-ice dynamics strongly promote snowball Earth initiation and destabilize tropical sea-ice margins. Climate Past, 8, 20792092, doi:10.5194/cp-8-2079-2012.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., D. S. Abbot, R. T. Pierrehumbert, and J. Marotzke, 2011: Initiation of a Marinoan snowball Earth in a state-of-the-art atmosphere-ocean general circulation model. Climate Past, 7, 249263, doi:10.5194/cp-7-249-2011.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2013: The observed hemispheric symmetry in reflected shortwave irradiance. J. Climate, 26, 468477.

    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., and V. E. Suomi, 1971: Measurements of the earth’s radiation budget from satellites during a five-year period. Part I: Extended time and space means. J. Atmos. Sci., 28, 305314.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B., B. Barkstrom, E. Harrison, R. Lee III, G. Smith, and J. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2009: On the link between Hadley circulation changes and radiative feedback processes. Geophys. Res. Lett.,36, L20703, doi:10.1029/2009GL040488.

  • Zhang, R., S. M. Kang, and I. M. Held, 2010: Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback. J. Climate, 23, 378389.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., and W. B. Rossow, 1997: Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. J. Climate, 10, 23582373.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 350 168 10
PDF Downloads 265 132 9

Compensation of Hemispheric Albedo Asymmetries by Shifts of the ITCZ and Tropical Clouds

View More View Less
  • 1 Max Planck Institute for Meteorology, Hamburg, Germany
  • | 2 Max Planck Institute for Meteorology, Hamburg, Germany, and Bjerknes Centre for Climate Research, Uni Research, Bergen, Norway
  • | 3 Max Planck Institute for Meteorology, Hamburg, Germany
Restricted access

Abstract

Despite a substantial hemispheric asymmetry in clear-sky albedo, observations of Earth’s radiation budget reveal that the two hemispheres have the same all-sky albedo. Here, aquaplanet simulations with the atmosphere general circulation model ECHAM6 coupled to a slab ocean are performed to study to what extent and by which mechanisms clouds compensate hemispheric asymmetries in clear-sky albedo. Clouds adapt to compensate the imposed asymmetries because the intertropical convergence zone (ITCZ) shifts into the dark surface hemisphere. The strength of this tropical compensation mechanism is linked to the magnitude of the ITCZ shift. In some cases the ITCZ shift is so strong as to overcompensate the hemispheric asymmetry in clear-sky albedo, yielding a range of climates for which the hemisphere with lower clear-sky albedo has a higher all-sky albedo. The ITCZ shift is sensitive to the convection scheme and the depth of the slab ocean. Cloud–radiative feedbacks explain part of the sensitivity to the convection scheme as they amplify the ITCZ shift in the Tiedtke (TTT) scheme but have a neutral effect in the Nordeng (TNT) scheme. A shallower slab ocean depth, and thereby reduced thermal inertia of the underlying surface and increased seasonal cycle, stabilizes the ITCZ against annual-mean shifts. The results lend support to the idea that the climate system adjusts so as to minimize hemispheric albedo asymmetries, although there is no indication that the hemispheres must have exactly the same albedo.

Current affiliation: Laboratoire de Météorologie Dynamique, IPSL, UPMC, Paris, France.

Corresponding author address: Aiko Voigt, Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: aiko.voigt@lmd.jussieu.fr

Abstract

Despite a substantial hemispheric asymmetry in clear-sky albedo, observations of Earth’s radiation budget reveal that the two hemispheres have the same all-sky albedo. Here, aquaplanet simulations with the atmosphere general circulation model ECHAM6 coupled to a slab ocean are performed to study to what extent and by which mechanisms clouds compensate hemispheric asymmetries in clear-sky albedo. Clouds adapt to compensate the imposed asymmetries because the intertropical convergence zone (ITCZ) shifts into the dark surface hemisphere. The strength of this tropical compensation mechanism is linked to the magnitude of the ITCZ shift. In some cases the ITCZ shift is so strong as to overcompensate the hemispheric asymmetry in clear-sky albedo, yielding a range of climates for which the hemisphere with lower clear-sky albedo has a higher all-sky albedo. The ITCZ shift is sensitive to the convection scheme and the depth of the slab ocean. Cloud–radiative feedbacks explain part of the sensitivity to the convection scheme as they amplify the ITCZ shift in the Tiedtke (TTT) scheme but have a neutral effect in the Nordeng (TNT) scheme. A shallower slab ocean depth, and thereby reduced thermal inertia of the underlying surface and increased seasonal cycle, stabilizes the ITCZ against annual-mean shifts. The results lend support to the idea that the climate system adjusts so as to minimize hemispheric albedo asymmetries, although there is no indication that the hemispheres must have exactly the same albedo.

Current affiliation: Laboratoire de Météorologie Dynamique, IPSL, UPMC, Paris, France.

Corresponding author address: Aiko Voigt, Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany. E-mail: aiko.voigt@lmd.jussieu.fr
Save