• Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and L. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Chang, C., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325.

    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128.

  • Dai, A., 2011a: Characteristics and trends in various forms of the Palmer drought severity index (PDSI) during 1900–2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011b: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646.

    • Search Google Scholar
    • Export Citation
  • Dai, A., I. Y. Fung, and A. D. Del Genio, 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10, 29432962.

    • Search Google Scholar
    • Export Citation
  • Dai, X. G., C. B. Fu, and P. Wang, 2005: Interdecadal change of atmospheric stationary waves and north China drought. Chin. Phys., 14, 850858.

    • Search Google Scholar
    • Export Citation
  • Fu, C. B., 2003: Potential impacts of human induced land cover change on East Asia monsoon. Global Planet. Change, 37, 219229.

  • Fu, C. B., and Z. S. An, 2002: Study of aridification in northern China—A global change issue facing directly the demand of nation (in Chinese). Earth Sci. Front, 9, 271275.

    • Search Google Scholar
    • Export Citation
  • Fu, C. B., and Z. G. Ma, 2008: Global change and regional aridification (in Chinese). Chin. J. Atmos. Sci., 32, 752760.

  • Gong, D.-Y., P.-J. Shi, and J.-A. Wang, 2004: Daily precipitation changes in the semi-arid region over northern China. J. Arid Environ., 59, 771784.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS 3.1 dataset. Int. J. Climatol., doi:10.1002/joc.3711, in press.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196.

    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, and R. Huang, 2011: The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Climate, 24, 53655377.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., 1997: Interdecadal variability of summer climate over East Asia and its association with 500-hPa height and global sea surface temperature. J. Geophys. Res., 102 D16 19 40319 412.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., S. Yang, and R. Wu, 2003: Long-term climate variations in China and global warming signals. J. Geophys. Res., 108, 4614, doi:10.1029/2003JD003651.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.

    • Search Google Scholar
    • Export Citation
  • Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319.

  • Ju, J., J. Lu, and J. Ren, 2006: The effect of interdecadal variations of Arctic Oscillation on aridization in north China (in Chinese). Plateau Meteor., 25, 7481.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1955: Rank Correlation Methods. 2nd ed. Charles Griffin and Company, 196 pp.

  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dyn., 34, 501514.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., 2007: The interdecadal trend and shift of dry/wet over the central part of north China and their relationship to the Pacific decadal oscillation (PDO). Chin. Sci. Bull., 52, 21302139.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., and L. Shao, 2006: Relationship between dry/wet variation and the Pacific decadal oscillation (PDO) in northern China during the last 100 years (in Chinese). Chin. J. Atmos. Sci., 30, 464474.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485.

  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683686.

  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855858.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Department of Commerce Rep. 45, 58 pp.

  • Qian, C., C. Fu, and Z. Wu, 2011a: Changes in the amplitude of the temperature annual cycle in China and their implication for climate change research. J. Climate, 24, 52925302.

    • Search Google Scholar
    • Export Citation
  • Qian, C., Z. Wu, C. Fu, and D. Wang, 2011b: On changing El Niño: A view from time-varying annual cycle, interannual variability, and mean state. J. Climate, 24, 64866500.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., B. Andreas, F. Peter, M.-C. Anja, R. Bruno, and Z. Markus, 2011: GPCC full data reanalysis version 6.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC Data Rep., doi:10.5676/DWD_GPCC/FD_M_V6_050.

  • Steinskog, D. J., D. B. Tjøstheim, and N. G. Kvamstø, 2007: A cautionary note on the use of the Kolmogorov–Smirnov test for normality. Mon. Wea. Rev., 135, 11511157.

    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., C. B. Fu, Z. M. Zeng, and Q. Y. Zhang, 1997: Two long-term instrumental climatic data bases of the People’s Republic of China. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory Rep. ORNL/CDIAC-102, NDP-039, 204 pp.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • von Storch, H., and A. Navarra, 1995: Analysis of Climate Variability: Applications of Statistical Techniques. Springer, 334 pp.

  • Wilhite, D. A., 2000: Drought as a natural hazard: Concepts and definitions. Droughts: A Global Assessment, D. A. Wilhite, Ed., Routledge, 3–18.

  • Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, S. R. Long, and C.-K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, doi:10.1007/s00382-011-1128-8.

    • Search Google Scholar
    • Export Citation
  • Yang, F., and K. Lau, 2004: Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures. Int. J. Climatol., 24, 16251644.

    • Search Google Scholar
    • Export Citation
  • Yang, X. Q., Q. Xie, Y. M. Zhu, X. G. Sun, and Y. J. Guo, 2005: Decadal to interdecadal variability of precipitation in north China and associated atmospheric and oceanic anomaly patterns (in Chinese). Chin. J. Geophys., 48, 789797.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., and T. Yasunari, 1994: Trends and decadal-scale fluctuations of surface air temperature and precipitation over China and Mongolia during the recent 40 year period (1951–1990). J. Meteor. Soc. Japan, 72, 937957.

    • Search Google Scholar
    • Export Citation
  • Yu, R., and T. Zhou, 2007: Seasonality and three-dimensional structure of the interdecadal change in East Asian monsoon. J. Climate, 20, 53445355.

    • Search Google Scholar
    • Export Citation
  • Yu, R., B. Wang, and T. Zhou, 2004: Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett., 31, L22212, doi:10.1029/2004GL021270.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Zhou, 2011: An assessment of monsoon precipitation changes during 1901–2001. Climate Dyn., 37, 279296, doi:10.1007/s00382-011-0993-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020.

  • Zhang, Y., X. Kuang, W. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708, doi:10.1029/2006GL026377.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009a: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon? Recent progress and state of affairs. Meteor. Z., 18, 455467.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009b: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., C. Y. Li, and J. C. L. Chan, 2006: The interdecadal variations of the summer monsoon rainfall over south China. Meteor. Atmos. Phys., 93, 165175.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Wang, W. Zhou, and J. Ma, 2011: Recent changes in the summer precipitation pattern in east China and the background circulation. Climate Dyn., 36, 14631473.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 805 485 35
PDF Downloads 631 363 23

Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900–2010

View More View Less
  • 1 RCE-TEA, and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Institute of Arid Meteorology, China Meteorological Administration, Lanzhou, China
  • | 2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

North China has undergone a severe drying trend since the 1950s, but whether this trend is natural variability or anthropogenic change remains unknown due to the short data length. This study extends the analysis of dry–wet changes in north China to 1900–2010 on the basis of self-calibrated Palmer drought severity index (PDSI) data. The ensemble empirical mode decomposition method is used to detect multidecadal variability. A transition from significant wetting to significant drying is detected around 1959/60. Approximately 70% of the drying trend during 1960–90 originates from 50–70-yr multidecadal variability related to Pacific decadal oscillation (PDO) phase changes. The PDSI in north China is significantly negatively correlated with the PDO index, particularly at the 50–70-yr time scale, and is also stable during 1900–2010. Composite differences between two positive PDO phases (1922–45 and 1977–2002) and one negative PDO phase (1946–76) for summer exhibit an anomalous Pacific–Japan/East Asian–Pacific patternlike teleconnection, which may develop locally in response to the PDO-associated warm sea surface temperature anomalies in the tropical Indo-Pacific Ocean and meridionally extends from the tropical western Pacific to north China along the East Asian coast. North China is dominated by an anomalous high pressure system at mid–low levels and an anticyclone at 850 hPa, which are favorable for dry conditions. In addition, a weakened land–sea thermal contrast in East Asia from a negative to a positive PDO phase also plays a role in the dry conditions in north China by weakening the East Asian summer monsoon.

Corresponding author address: Dr. Cheng Qian, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: qianch@tea.ac.cn

Abstract

North China has undergone a severe drying trend since the 1950s, but whether this trend is natural variability or anthropogenic change remains unknown due to the short data length. This study extends the analysis of dry–wet changes in north China to 1900–2010 on the basis of self-calibrated Palmer drought severity index (PDSI) data. The ensemble empirical mode decomposition method is used to detect multidecadal variability. A transition from significant wetting to significant drying is detected around 1959/60. Approximately 70% of the drying trend during 1960–90 originates from 50–70-yr multidecadal variability related to Pacific decadal oscillation (PDO) phase changes. The PDSI in north China is significantly negatively correlated with the PDO index, particularly at the 50–70-yr time scale, and is also stable during 1900–2010. Composite differences between two positive PDO phases (1922–45 and 1977–2002) and one negative PDO phase (1946–76) for summer exhibit an anomalous Pacific–Japan/East Asian–Pacific patternlike teleconnection, which may develop locally in response to the PDO-associated warm sea surface temperature anomalies in the tropical Indo-Pacific Ocean and meridionally extends from the tropical western Pacific to north China along the East Asian coast. North China is dominated by an anomalous high pressure system at mid–low levels and an anticyclone at 850 hPa, which are favorable for dry conditions. In addition, a weakened land–sea thermal contrast in East Asia from a negative to a positive PDO phase also plays a role in the dry conditions in north China by weakening the East Asian summer monsoon.

Corresponding author address: Dr. Cheng Qian, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: qianch@tea.ac.cn
Save