• Achuthavarier, D., and V. Krishnamurthy, 2011a: Daily modes of South Asian summer monsoon variability in the NCEP Climate Forecast System. Climate Dyn., 36, 19411958.

    • Search Google Scholar
    • Export Citation
  • Achuthavarier, D., and V. Krishnamurthy, 2011b: Role of Indian and Pacific SST in Indian summer monsoon intraseasonal variability. J. Climate, 24, 29152930.

    • Search Google Scholar
    • Export Citation
  • Achuthavarier, D., V. Krishnamurthy, B. P. Kirtman, and B. Huang, 2012: Role of the Indian Ocean in the ENSO–Indian summer monsoon teleconnection in the NCEP Climate Forecast System. J. Climate, 25, 24902508.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and K. R. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30-50 day) variability. J. Atmos. Sci., 62, 27262748.

    • Search Google Scholar
    • Export Citation
  • Broomhead, D. S., and G. P. King, 1986: Extracting qualitative dynamics from experimental data. Physica D, 20, 217236.

  • Charney, J. G., and J. Shukla, 1981: Predictability of monsoons. Monsoon Dynamics, J. Lighthill and R. P. Pearce, Eds., Cambridge University Press, 99–109.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, D. A. Randall, J. L. Kinter III, and M. Khairoutdinov, 2011: The Asian monsoon in the superparameterized CCSM and its relationship to tropical wave activity. J. Climate, 24, 51345156.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Climate, 26, 19731992.

    • Search Google Scholar
    • Export Citation
  • Drbohlav, H.-K. L., and V. Krishnamurthy, 2010: Spatial structure, forecast errors and predictability of South Asian monsoon in CFS monthly retrospective forecasts. J. Climate, 23, 47504769.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/2000RG000092.

  • Goswami, B. B., P. Mukhopadhyay, M. Khairoutdinov, and B. N. Goswami, 2012: Simulation of Indian summer monsoon intraseasonal oscillations in a superparameterized coupled climate model: Need to improve the embedded cloud resolving model. Climate Dyn., 41, 1497–1507, doi:10.1007/s00382-012-1563-1.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Krishnamurthy, and H. Annamalai, 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2003: Cloud-resolving modeling of ARM summer 1997 IOP: Model formulation, results, uncertainties and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., C. A. DeMott, and D. A. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU multiscale modeling framework. J. Climate, 21, 413431.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13, 43664377.

  • Krishnamurthy, V., and J. L. Kinter III, 2003: The Indian monsoon and its relation to global climate variability. Global Climate, X. Rodó and F. A. Comín, Eds., Springer-Verlag, 186–236.

  • Krishnamurthy, V., and J. Shukla, 2007: Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Climate, 20, 320.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2008: Seasonal persistence and propagation of intraseasonal patterns over the Indian monsoon region. Climate Dyn., 30, 353369.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. P. Kirtman, 2009: Relation between Indian monsoon variability and SST. J. Climate, 22, 44374458.

  • Krishnamurthy, V., and D. Achuthavarier, 2012: Intraseasonal oscillations of the monsoon circulation over South Asia. Climate Dyn., 38, 23352353.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Moron, V., R. Vautard, and M. Ghil, 1998: Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Climate Dyn., 14, 545569.

    • Search Google Scholar
    • Export Citation
  • Plaut, G., and R. Vautard, 1994: Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51, 210236.

    • Search Google Scholar
    • Export Citation
  • Rai, S., and V. Krishnamurthy, 2011: Error growth in CFS daily retrospective forecasts of South Asian monsoon. J. Geophys. Res., 116, D03108, doi:10.1029/2010JD014840.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, doi:10.1007/s00382-012-1607-6.

    • Search Google Scholar
    • Export Citation
  • Stan, C., M. Khairoutdinov, C. A. DeMott, V. Krishnamurthy, D. M. Straus, D. A. Randall, J. L. Kinter III, and J. Shukla, 2010: An ocean-atmosphere climate simulation with an embedded cloud resolving model. Geophys. Res. Lett., 37, L01702, doi:10.1029/2009GL040822.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 26 1
PDF Downloads 28 12 0

Simulation of the South Asian Monsoon in a Coupled Model with an Embedded Cloud-Resolving Model

View More View Less
  • 1 Center for Ocean-Land-Atmosphere Studies, Institute of Global Environment and Society, and Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 3 Center for Ocean-Land-Atmosphere Studies, Institute of Global Environment and Society, Fairfax, Virginia
  • | 4 Center for Ocean-Land-Atmosphere Studies, Institute of Global Environment and Society, and Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia
Restricted access

Abstract

The simulation of the South Asian monsoon by a coupled ocean–atmosphere model with an embedded cloud-resolving model is analyzed on intraseasonal and interannual time scales. The daily modes of variability in the superparameterized Community Climate System Model, version 3 (SP-CCSM), are compared with those in observation, the superparameterized Community Atmospheric Model, version 3 (SP-CAM3), and the control simulation of CCSM (CT-CCSM) with conventional parameterization of convection. The CT-CCSM fails to simulate the observed intraseasonal oscillations but is able to generate the atmospheric El Niño–Southern Oscillation (ENSO) mode, although with regular biennial variability. The dominant modes of variability extracted from daily anomalies of outgoing longwave radiation, precipitation, and low-level horizontal wind in SP-CCSM consist of two intraseasonal oscillations and two seasonally persisting modes, in good agreement with observation. The most significant observed features of the intraseasonal oscillations correctly simulated by the SP-CCSM are the northward propagation of convection, precipitation, and circulation as well as the eastward and westward propagations. The observed spatial structure and the periods of the oscillations are also well captured by the SP-CCSM, although with lesser magnitude. The SP-CCSM is able to simulate the chaotic variability and spatial structure of the seasonally persisting atmospheric ENSO mode, while the evidence for the Indian Ocean dipole mode is inconclusive. The SP-CAM3 simulates two intraseasonal oscillations and the atmospheric ENSO mode. However, the intraseasonal oscillations in SP-CAM3 do not show northward propagation while their periods and spatial structures are not comparable to observation. The results of this study indicate the necessity of coupled models with sufficiently realistic cloud parameterizations.

Corresponding author address: V. Krishnamurthy, Center for Ocean-Land-Atmosphere Studies, Research Hall, MS 6C5, George Mason University, 4400 University Drive, Fairfax, VA 22030. E-mail: krishna@cola.iges.org

Abstract

The simulation of the South Asian monsoon by a coupled ocean–atmosphere model with an embedded cloud-resolving model is analyzed on intraseasonal and interannual time scales. The daily modes of variability in the superparameterized Community Climate System Model, version 3 (SP-CCSM), are compared with those in observation, the superparameterized Community Atmospheric Model, version 3 (SP-CAM3), and the control simulation of CCSM (CT-CCSM) with conventional parameterization of convection. The CT-CCSM fails to simulate the observed intraseasonal oscillations but is able to generate the atmospheric El Niño–Southern Oscillation (ENSO) mode, although with regular biennial variability. The dominant modes of variability extracted from daily anomalies of outgoing longwave radiation, precipitation, and low-level horizontal wind in SP-CCSM consist of two intraseasonal oscillations and two seasonally persisting modes, in good agreement with observation. The most significant observed features of the intraseasonal oscillations correctly simulated by the SP-CCSM are the northward propagation of convection, precipitation, and circulation as well as the eastward and westward propagations. The observed spatial structure and the periods of the oscillations are also well captured by the SP-CCSM, although with lesser magnitude. The SP-CCSM is able to simulate the chaotic variability and spatial structure of the seasonally persisting atmospheric ENSO mode, while the evidence for the Indian Ocean dipole mode is inconclusive. The SP-CAM3 simulates two intraseasonal oscillations and the atmospheric ENSO mode. However, the intraseasonal oscillations in SP-CAM3 do not show northward propagation while their periods and spatial structures are not comparable to observation. The results of this study indicate the necessity of coupled models with sufficiently realistic cloud parameterizations.

Corresponding author address: V. Krishnamurthy, Center for Ocean-Land-Atmosphere Studies, Research Hall, MS 6C5, George Mason University, 4400 University Drive, Fairfax, VA 22030. E-mail: krishna@cola.iges.org
Save