• Abatzoglou, J. T., 2010: Influence of the PNA on declining mountain snowpack in the western United States. Int. J. Climatol., 31, 11351142.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and et al., 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Anderson, L., M. B. Abbott, B. P. Finney, and S. J. Burns, 2005: Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quat. Res., 64, 2135.

    • Search Google Scholar
    • Export Citation
  • Berkelhammer, M. B., and L. D. Stott, 2008: Recent and dramatic changes in Pacific storm trajectories recorded in δ18O from Bristlecone Pine tree ring cellulose. Geochem. Geophys. Geosyst., 9, Q04008, doi:10.1029/2007GC001803.

    • Search Google Scholar
    • Export Citation
  • Berkelhammer, M. B., L. D. Stott, K. Yoshimura, K. Johnson, and A. Sinha, 2012: Synoptic and mesoscale controls on the isotopic composition of precipitation in the western United States. Climate Dyn., 38, 433454.

    • Search Google Scholar
    • Export Citation
  • Birks, S. J., and T. W. D. Edwards, 2009: Atmospheric circulation controls on precipitation isotope–climate relations in western Canada. Tellus, 61B, 566576.

    • Search Google Scholar
    • Export Citation
  • Buenning, N. H., L. Stott, K. Yoshimura, and M. Berkelhammer, 2012: The cause of the seasonal variation in the oxygen isotopic composition of precipitation along the western U.S. coast. J. Geophys. Res., 117, D18114, doi:10.1029/2012JD018050.

    • Search Google Scholar
    • Export Citation
  • Buenning, N. H., L. Stott, L. Kanner, and K. Yoshimura, 2013: Diagnosing atmospheric influences on the interannual 18O/16O variations in western US precipitation. Water, 5, 11161140.

    • Search Google Scholar
    • Export Citation
  • Burnett, A. W., H. T. Mullins, and W. P. Patterson, 2004: Relationship between atmospheric circulation and winter precipitation δ18O in central New York State. Geophys. Res. Lett.,31, L22209, doi:10.1029/2004GL021089.

  • Christensen, J. H., and et al., 2007: Regional climate projections. Climate Change, 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • Coleman, J. S. M., and J. C. Rogers, 2003: Ohio River valley winter moisture conditions associated with the Pacific–North American teleconnection pattern. J. Climate, 16, 969981.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev., 81, 93134.

    • Search Google Scholar
    • Export Citation
  • D’Arrigo, R., R. Wilson, and G. Jacoby, 2006: On the long-term context for late twentieth century warming. J. Geophys. Res., 111, D03103, doi:10.1029/2005JD006352.

    • Search Google Scholar
    • Export Citation
  • Duffy, P., B. Govindasamy, J. P. Iorio, J. Milovich, K. R. Sperber, K. E. Taylor, M. F. Wehner, and S. L. Thompson 2003: High-resolution simulations of global climate, part 1: Present climate. Climate Dyn., 21, 371390.

    • Search Google Scholar
    • Export Citation
  • Edwards, T. W. D., S. J. Birks, B. H. Luckman, and G. M. MacDonald, 2008: Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quat. Res., 70, 188197.

    • Search Google Scholar
    • Export Citation
  • Field, R. D., 2010: Observed and modeled controls on precipitation δ18O over Europe: From local temperature to the northern annular mode. J. Geophys. Res., 115, D12101, doi:10.1029/2009JD013370.

    • Search Google Scholar
    • Export Citation
  • Field, R. D., G. Moore, G. Holdsworth, and G. A. Schmidt, 2010: A GCM-based analysis of circulation controls on δ18O in the southwest Yukon, Canada: Implications for climate reconstructions in the region. Geophys. Res. Lett., 37, L05706, doi:10.1029/2009GL041408.

    • Search Google Scholar
    • Export Citation
  • Fisher, D. A., and et al., 2004: Stable isotope records from Mount Logan, eclipse ice cores and nearby Jellybean Lake. Water cycle of the North Pacific over 2000 years and over five vertical kilometres: Sudden shifts and tropical connections. Geogr. Phys. Quat., 58, 337352.

    • Search Google Scholar
    • Export Citation
  • Friedman, I., J. M. Harris, G. I. Smith, and C. A. Johnson, 2002: Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories. J. Geophys. Res., 107, 4400, doi:10.1029/2001JD000565.

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., and J. R. Lawrence, 1990: The isotopic composition of precipitation from two extratropical cyclones. Mon. Wea. Rev., 118, 495509.

    • Search Google Scholar
    • Export Citation
  • Holdsworth, G., H. Krouse, and M. Nosal, 1992: Ice core climate signals from Mount Logan, Yukon AD 1700-1987. Climate since A.D. 1500 Dataset, International Geosphere-Biosphere Programme, 483–504.

  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829.

    • Search Google Scholar
    • Export Citation
  • Hubeny, J. B., J. W. King, and M. Reddin, 2011: Northeast US precipitation variability and North American climate teleconnections interpreted from late Holocene varved sediments. Proc. Natl. Acad. Sci. USA, 108, 17 89517 900.

    • Search Google Scholar
    • Export Citation
  • Jin, J., N. L. Miller, S. Sorooshian, and X. Gao, 2006: Relationship between atmospheric circulation and snowpack in the western United States. Hydrol. Processes, 20, 753767.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985.

  • Kirby, M. E., H. T. Mullins, W. P. Patterson, and A. W. Burnett, 2001: Lacustrine isotopic evidence for multidecadal natural climate variability related to the circumpolar vortex over the northeast United States during the past millennium. Geology, 29, 807810.

    • Search Google Scholar
    • Export Citation
  • Kitzberger, T., P. M. Brown, E. K. Heyerdahl, T. W. Swetnam, and T. T. Veblen, 2007: Contingent Pacific–Atlantic Ocean influence on multicentury wildfire synchrony over western North America. Proc. Natl. Acad. Sci. USA, 104, 543548.

    • Search Google Scholar
    • Export Citation
  • Kohn, M. J., and J. M. Welker, 2005: On the temperature correlation of δ18O in modern precipitation. Earth Planet. Sci. Lett., 231, 8796.

    • Search Google Scholar
    • Export Citation
  • Kreutz, K., P. Mayewski, L. Meeker, M. Twickler, S. Whitlow, and I. Pittalwala, 1997: Bipolar changes in atmospheric circulation during the Little Ice Age. Science, 277, 12941296.

    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., G. J. Bowen, and J. M. Welker, 2010: Atmospheric circulation is reflected in precipitation isotope gradients over the conterminous United States. J. Geophys. Res., 115,D22120, doi:10.1029/2010JD014175.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., C. D. Kennedy, and G. J. Bowen, 2011: Pacific/North American teleconnection controls on precipitation isotope ratios across the contiguous United States. Earth Planet. Sci. Lett., 310, 319326.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., G. J. Bowen, J. M. Welker, and K. Yoshimura, 2012: Winter precipitation isotope slopes of the contiguous United States and their relationship to the Pacific/North American (PNA) pattern. Climate Dyn., 41, 403–420, doi:10.1007/s00382-012-1548-0.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141.

    • Search Google Scholar
    • Export Citation
  • McCabe-Glynn, S., K. R. Johnson, C. Strong, M. Berkelhammer, A. Sinha, H. Cheng, and R. L. Edwards, 2013: Variable North Pacific influence on drought in southwestern North America since AD 854. Nat. Geosci.,6, 617–621, doi:10.1038/ngeo1862.

  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712.

    • Search Google Scholar
    • Export Citation
  • Nelson, D. B., and et al., 2011: Drought variability in the Pacific Northwest from a 6,000-yr lake sediment record. Proc. Natl. Acad. Sci. USA, 108, 38703875.

    • Search Google Scholar
    • Export Citation
  • Rawlins, M., R. Bradley, and H. Diaz, 2012: Assessment of regional climate model simulation estimates over the northeast United States. J. Geophys. Res., 117, D23112, doi:10.1029/2012JD018137.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and J. S. Coleman, 2003: Interactions between the Atlantic multidecadal oscillation, El Nino/La Nina, and the PNA in winter Mississippi valley stream flow. Geophys. Res. Lett., 30, 1518, doi:10.1029/2003GL017216.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., G. Hoffmann, D. T. Shindell, and Y. Hu, 2005: Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. J. Geophys. Res., 110, D21314, doi:10.1029/2005JD005790.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., A. N. LeGrande, and G. Hoffmann, 2007: Water isotope expressions of intrinsic and forced variability in a coupled ocean–atmosphere model. J. Geophys. Res., 112, D10103, doi:10.1029/2006JD007781.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., 2003: North American weather-type frequency and teleconnection indices. Int. J. Climatol., 23, 2745.

  • Simpkins, W. W., 1995: Isotopic composition of precipitation in central Iowa. J. Hydrol., 172, 185207.

  • Sjostrom, D. J., and J. M. Welker, 2009: The influence of air mass source on the seasonal isotopic composition of precipitation, eastern United States. J. Geochem. Explor., 102, 103112.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15, 23402358.

  • Trouet, V., A. H. Taylor, A. M. Carleton, and C. N. Skinner, 2006: Fire–climate interactions in forests of the American Pacific coast. Geophys. Res. Lett., 33, L18704, doi:10.1029/2006GL027502.

    • Search Google Scholar
    • Export Citation
  • Vachon, R., J. M. Welker, J. W. C. White, and B. H. Vaughn, 2010a: Moisture source temperatures and precipitation δ18O–temperature relationships across the United States. Water Resour. Res., 46, W07523, doi:10.1029/2009WR008558.

    • Search Google Scholar
    • Export Citation
  • Vachon, R.,J. M. Welker, J. W. C. White, and B. H. Vaughn, 2010b: Monthly precipitation isoscapes (δ18O) of the United States: Connections with surface temperatures, moisture source conditions, and air mass trajectories. J. Geophys. Res., 115, D21126, doi:10.1029/2010JD014105.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Welker, J. M., 2000: Isotopic (δ18O) characteristics of weekly precipitation collected across the United States: An initial analysis with application to water source studies. Hydrol. Processes, 14, 14491464.

    • Search Google Scholar
    • Export Citation
  • Welker, J. M., 2012: ENSO effects on δ18O, δ2H and d-excess values in precipitation across the US using a high-density, long-term network (USNIP). Rapid Commun. Mass Spectrom., 26, 18931898.

    • Search Google Scholar
    • Export Citation
  • Wiles, G. C., A. C. Krawiec, and R. D. D’Arrigo, 2009: A 265-year reconstruction of Lake Erie water levels based on North Pacific tree rings. Geophys. Res. Lett., 36, L05705, doi:10.1029/2009GL037164.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, K., and M. Kanamitsu, 2008: Dynamical global downscaling of global reanalysis. Mon. Wea. Rev., 136, 29832998.

  • Yoshimura, K., M. Kanamitsu, D. Noone, and T. Oki, 2008: Historical isotope simulation using reanalysis atmospheric data. J. Geophys. Res., 113, D19108, doi:10.1029/2008JD010074.

    • Search Google Scholar
    • Export Citation
  • Yu, B., and F. Zwiers, 2007: The impact of combined ENSO and PDO on the PNA climate: A 1,000-year climate modeling study. Climate Dyn., 29, 837851.

    • Search Google Scholar
    • Export Citation
  • Yu, B., A. Shabbar, and F. Zwiers, 2007: The enhanced PNA-like climate response to Pacific interannual and decadal variability. J. Climate, 20, 52855300.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 158 17
PDF Downloads 223 136 8

Pacific–North American Teleconnection Controls on Precipitation Isotopes (δ18O) across the Contiguous United States and Adjacent Regions: A GCM-Based Analysis

View More View Less
  • 1 Tianjin Key Laboratory of Water Resource and Environment, Tianjin Normal University, Tianjin, China, and Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
  • | 2 Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
  • | 3 Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah
  • | 4 Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska
Restricted access

Abstract

The Pacific–North American (PNA) teleconnection pattern has a strong influence on North America’s winter climate, but much less is known about how the PNA pattern controls precipitation isotopes (e.g., δ18O) across the United States. In this study, an isotopically equipped atmospheric general circulation model (isoGSM) is used to investigate how divergent phases of the PNA affect precipitation δ18O values across the United States. A simulation using observational climate and isotope data over the United States is evaluated first. The simulation explains 84% of the spatial variability of winter precipitation δ18O, with an overestimation in the northern Rocky Mountains and the Great Lakes. Temporally, the simulation explains 29%–81% of the interannual variability of winter precipitation δ18O, with typically a higher explained variance in the east than the west. The modeled winter precipitation δ18O exhibits a clear northwest–southeast (NW–SE) dipolelike pattern in response to shifts in the PNA pattern, with the center of positive polarity in the northwestern United States and the Canadian prairies and the center of negative polarity over the Ohio River valley. This dipolelike spatial pattern is a result of the difference in atmospheric circulation and moisture sources associated with the PNA pattern. These results highlight the importance of the PNA-associated circulation dynamics in governing precipitation isotope patterns across the United States. This understanding improves our ability to interpret paleoclimate records of water isotope/hydrologic change across the United States with a much greater appreciation of regional traits. The robust antiphase oscillation in precipitation isotopes in response to shifting the PNA pattern provides a promising opportunity to reconstruct the past variability in the PNA pattern that may be recorded in ice cores, tree rings, lake sediments, and speleothems.

Corresponding author address: Zhongfang Liu, Atmosphere and Ocean Research Institute, University of Tokyo, General Research Bldg. 211a, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: liuzf406@gmail.com

Abstract

The Pacific–North American (PNA) teleconnection pattern has a strong influence on North America’s winter climate, but much less is known about how the PNA pattern controls precipitation isotopes (e.g., δ18O) across the United States. In this study, an isotopically equipped atmospheric general circulation model (isoGSM) is used to investigate how divergent phases of the PNA affect precipitation δ18O values across the United States. A simulation using observational climate and isotope data over the United States is evaluated first. The simulation explains 84% of the spatial variability of winter precipitation δ18O, with an overestimation in the northern Rocky Mountains and the Great Lakes. Temporally, the simulation explains 29%–81% of the interannual variability of winter precipitation δ18O, with typically a higher explained variance in the east than the west. The modeled winter precipitation δ18O exhibits a clear northwest–southeast (NW–SE) dipolelike pattern in response to shifts in the PNA pattern, with the center of positive polarity in the northwestern United States and the Canadian prairies and the center of negative polarity over the Ohio River valley. This dipolelike spatial pattern is a result of the difference in atmospheric circulation and moisture sources associated with the PNA pattern. These results highlight the importance of the PNA-associated circulation dynamics in governing precipitation isotope patterns across the United States. This understanding improves our ability to interpret paleoclimate records of water isotope/hydrologic change across the United States with a much greater appreciation of regional traits. The robust antiphase oscillation in precipitation isotopes in response to shifting the PNA pattern provides a promising opportunity to reconstruct the past variability in the PNA pattern that may be recorded in ice cores, tree rings, lake sediments, and speleothems.

Corresponding author address: Zhongfang Liu, Atmosphere and Ocean Research Institute, University of Tokyo, General Research Bldg. 211a, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: liuzf406@gmail.com
Save