• Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350354, doi:10.1038/nature11097.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, doi:10.1038/ngeo1767.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett., 39, L20705, doi:10.1029/2012GL053393.

    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2009: Sea ice index. National Snow and Ice Data Center, Boulder, CO, digital media, doi:10.7265/N5QJ7F7W.

  • Fyfe, J. C., N. P. Gillett, and G. J. Marshall, 2012: Human influence on extratropical Southern Hemisphere summer precipitation. Geophys. Res. Lett., 39, L23711, doi:10.1029/2012GL054199.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., J. C. Fyfe, and D. E. Parker, 2013: Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys. Res. Lett., 40, 23022306, doi:10.1002/grl.50500.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate,15, 3043–3057.

  • Hardiman, S. C., N. Butchart, T. J. Hinton, S. M. Osprey, and L. J. Gray, 2012: The effect of a well-resolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the Met Office Climate Model. J. Climate, 25, 70837099.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, doi:10.1038/ngeo1627.

  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, W., H. Gossee, R. Timmermann, and T. Fichefet, 2004: Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res., 109, C09005, doi:10.1029/2004JC002403.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, and D. G. Martinson, 2004: Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett., 31, L02205, doi:10.1029/2003GL018732.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., P. R. Gent, and S. Solomon, 2013: Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations. J. Geophys. Res. Atmos.,118, 5105–5110, doi:10.1002/jgrd.50443.

  • McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. Jonsson, and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 18501868.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett.,40, 3195–3199, doi:10.1002/grl.50578.

  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19, 44574486.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett., 37, L18502, doi:10.1029/2010GL044301.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., L. M. Ciasto, D. W. J. Thompson, and M. H. England, 2012: Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Climate, 25, 54515469.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., L. M. Polvani, and D. R. Marsh, 2012: Mitigation of 21st century Antarctic sea ice loss by stratospheric ozone recovery. Geophys. Res. Lett., 39, L20701, doi:10.1029/2012GL053325.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, doi:10.1029/2009GL038671.

    • Search Google Scholar
    • Export Citation
  • Staten, P. W., J. J. Rutz, T. Reichler, and J. Lu, 2011: Breaking down the tropospheric circulation response by forcing. Climate Dyn., 39, 23612375, doi:10.1007/s00382-011-1267-y.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2013: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett., 40, 43284332, doi:10.1002/grl.50820.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2009: Nonannular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524.

    • Search Google Scholar
    • Export Citation
  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484.

    • Search Google Scholar
    • Export Citation
  • Zunz, V., H. Goosse, and F. Massonnet, 2013: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere,7, 451–468, doi:10.5194/tc-7-451-2013.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 380 200 5
PDF Downloads 222 104 2

The Antarctic Sea Ice Response to the Ozone Hole in Climate Models

View More View Less
  • 1 Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada
Restricted access

Abstract

It has been suggested that the increase of Southern Hemisphere sea ice extent since the 1970s can be explained by ozone depletion in the Southern Hemisphere stratosphere. In a previous study, the authors have shown that in a coupled atmosphere–ocean–sea ice model the ozone hole does not lead to an increase but to a decrease in sea ice extent. Here, the robustness of this result is established through the analysis of models from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Comparison of the mean sea ice trends in CMIP3 models with and without time-varying stratospheric ozone suggests that ozone depletion is associated with decreased sea ice extent, and ozone recovery acts to mitigate the future sea ice decrease associated with increasing greenhouse gases. All available historical simulations with CMIP5 models that were designed to isolate the effect of time-varying ozone concentrations show decreased sea ice extent in response to historical ozone trends. In most models, the historical sea ice extent trends are mainly driven by historical greenhouse gas forcing, with ozone forcing playing a secondary role.

Corresponding author address: Michael Sigmond, Canadian Centre for Climate Modelling and Analysis, University of Victoria, P.O. Box 1700 STN CSC, Victoria BC V8W 2Y2, Canada. E-mail: michael.sigmond@ec.gc.ca

Abstract

It has been suggested that the increase of Southern Hemisphere sea ice extent since the 1970s can be explained by ozone depletion in the Southern Hemisphere stratosphere. In a previous study, the authors have shown that in a coupled atmosphere–ocean–sea ice model the ozone hole does not lead to an increase but to a decrease in sea ice extent. Here, the robustness of this result is established through the analysis of models from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Comparison of the mean sea ice trends in CMIP3 models with and without time-varying stratospheric ozone suggests that ozone depletion is associated with decreased sea ice extent, and ozone recovery acts to mitigate the future sea ice decrease associated with increasing greenhouse gases. All available historical simulations with CMIP5 models that were designed to isolate the effect of time-varying ozone concentrations show decreased sea ice extent in response to historical ozone trends. In most models, the historical sea ice extent trends are mainly driven by historical greenhouse gas forcing, with ozone forcing playing a secondary role.

Corresponding author address: Michael Sigmond, Canadian Centre for Climate Modelling and Analysis, University of Victoria, P.O. Box 1700 STN CSC, Victoria BC V8W 2Y2, Canada. E-mail: michael.sigmond@ec.gc.ca
Save