The Coherence and Impact of Meridional Heat Transport Anomalies in the Atlantic Ocean Inferred from Observations

Kathryn A. Kelly Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Kathryn A. Kelly in
Current site
Google Scholar
PubMed
Close
,
LuAnne Thompson School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by LuAnne Thompson in
Current site
Google Scholar
PubMed
Close
, and
John Lyman NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington, and Joint Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by John Lyman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of thermosteric sea level (TSL) from hydrographic data, equivalent water thickness (EWT) from the Gravity Recovery and Climate Experiment (GRACE), and altimetric sea surface height (SSH) are used to infer meridional heat transport (MHT) anomalies for the Atlantic Ocean. An “unknown control” version of a Kalman filter in each of eight regions extracts smooth estimates of heat transport convergence (HTC) from discrepancies between the response to monthly surface heat and freshwater fluxes and observed mass and heat content. Two models are used: model A using only the heat budget for 1993–2010 and model B using both heat and mass budgets for 2003–10. Based on the small contributions of mass to SSH, model A is rerun using SSH in place of TSL to improve temporal resolution and data consistency. Estimates of MHT are derived by summing the HTC from north to south assuming either negligible anomalies at 67°N or setting MHT to observed values near 40°N. Both methods show that MHT is highly coherent between 35°S and 40°N. The former method gives a large drop in coherence north of 40°N while the latter method gives a less dramatic drop. Estimated anomalies in MHT comparable to or larger than that recently observed at the Rapid Climate Change and Meridional Overturning Circulation and Heatflux Array (RAPID/MOCHA) line at 26.5°N have occurred multiple times in this 18-yr period. Positive anomalies in coherent MHT correspond to increased heat loss in the North Atlantic subtropical gyre demonstrating the feedback of oceanic heat transport anomalies on air–sea fluxes. A correlation of MHT with the Antarctic Oscillation suggests a southern source for the coherent MHT anomalies.

Pacific Marine Environmental Laboratory Contribution Number 3950 and Joint Institute for Marine and Atmospheric Research Contribution Number 12-382.

Corresponding author address: Kathryn Kelly, Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA 98195-5640. E-mail: kkelly@apl.washington.edu

Abstract

Observations of thermosteric sea level (TSL) from hydrographic data, equivalent water thickness (EWT) from the Gravity Recovery and Climate Experiment (GRACE), and altimetric sea surface height (SSH) are used to infer meridional heat transport (MHT) anomalies for the Atlantic Ocean. An “unknown control” version of a Kalman filter in each of eight regions extracts smooth estimates of heat transport convergence (HTC) from discrepancies between the response to monthly surface heat and freshwater fluxes and observed mass and heat content. Two models are used: model A using only the heat budget for 1993–2010 and model B using both heat and mass budgets for 2003–10. Based on the small contributions of mass to SSH, model A is rerun using SSH in place of TSL to improve temporal resolution and data consistency. Estimates of MHT are derived by summing the HTC from north to south assuming either negligible anomalies at 67°N or setting MHT to observed values near 40°N. Both methods show that MHT is highly coherent between 35°S and 40°N. The former method gives a large drop in coherence north of 40°N while the latter method gives a less dramatic drop. Estimated anomalies in MHT comparable to or larger than that recently observed at the Rapid Climate Change and Meridional Overturning Circulation and Heatflux Array (RAPID/MOCHA) line at 26.5°N have occurred multiple times in this 18-yr period. Positive anomalies in coherent MHT correspond to increased heat loss in the North Atlantic subtropical gyre demonstrating the feedback of oceanic heat transport anomalies on air–sea fluxes. A correlation of MHT with the Antarctic Oscillation suggests a southern source for the coherent MHT anomalies.

Pacific Marine Environmental Laboratory Contribution Number 3950 and Joint Institute for Marine and Atmospheric Research Contribution Number 12-382.

Corresponding author address: Kathryn Kelly, Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA 98195-5640. E-mail: kkelly@apl.washington.edu
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and Coauthors, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429–436, doi:10.1038/nature09983.

    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett.,34, L23606, doi:10.1029/2007GL031731.

  • Boccaletti, G., R. Ferrari, A. Adcroft, D. Ferreira, and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophys. Res. Lett.,32, L10603, doi:10.1029/2005GL022474.

  • Cabanes, C., T. Lee, and L.-L. Fu, 2008: Mechanisms of interannual variations of the meridional overturning circulation of the North Atlantic Ocean. J. Phys. Oceanogr., 38, 467480.

    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., 2006: Evaluation of new GRACE time-variable gravity data over the ocean. Geophys. Res. Lett.,33, L17603, doi:10.1029/2006GL027296.

  • Chambers, D. P., and J. K. Willis, 2010: A global evaluation of ocean bottom pressure from GRACE, OMCT, and steric-corrected altimetry. J. Atmos. Oceanic Technol., 27, 13951402.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2010: Ocean temperature and salinity contributions to global and regional sea-level change. Understanding Sea-Level Rise and Variability, J. A. Church et al., Eds., Wiley-Blackwell, 143–176.

  • Cunningham, S., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286.

  • Delworth, T., and F. Zeng, 2012: Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophys. Res. Lett.,39, L13702, doi:10.1029/2012GL052107.

  • Deutsch, C. H., H. Brix, H. Frenzel, and L. Thompson, 2011: Climate-forced variability of ocean hypoxia. Science, 333, 336339.

  • Dong, S., and K. A. Kelly, 2004: The heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Phys. Oceanogr., 34, 12141231.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. Garzoli, and M. O. Baringer, 2011: The role of interocean exchanges on decadal variations of the meridional heat transport in the South Atlantic. J. Phys. Oceanogr., 41, 14981511.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P.-Y. L. Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 (C8), 19 47719 498.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16, 696705.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., M. O. Baringer, S. Dong, R. C. Perez, and Q. Yao, 2013: South Atlantic meridional fluxes. Deep-Sea Res. I, 71, 21–32, doi:10.1016/j.dsr.2012.09.003.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic during the 1990s. Science, 305, 555559, doi:10.1126/science.1094917.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2009: Shifting surface currents in the northern North Atlantic Ocean. J. Geophys. Res., 114, C04005, doi:10.1029/2008JC004883.

    • Search Google Scholar
    • Export Citation
  • Heimbach, P., C. Wunsch, R. Ponte, G. Forget, C. Hill, and J. Utke, 2011: Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design. Deep-Sea Res. II, 58, 18581879.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., J. M. Wahr, and F. O. Bryan, 2003: Observing ocean heat content using satellite gravity and altimetry. J. Geophys. Res., 108, 3031, doi:10.1029/2002JC001619.

    • Search Google Scholar
    • Export Citation
  • Johns, W., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., and T. Radko, 2011: Role of the Southern Ocean in setting the Atlantic stratification and meridional overturning circulation. J. Mar. Res., 69, 277308, doi:10.1357/002224011798765286.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. J. Small, R. Samelson, B. Qiu, T. M. Joyce, M. Cronin, and Y.-O. Kwon, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., and G. C. Johnson, 2008: Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling. J. Climate, 21, 56295641.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2009: The CLIMODE field campaign: Observing the cycle of convection and restratification over the Gulf Stream. Bull. Amer. Meteor. Soc., 90, 13371350.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G., and Coauthors, 2012: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 39, L19609, doi:10.1029/2012GL052933.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., C. C. Frankignoul, and L. Z. X. Li, 2011: Mechanisms of the atmospheric response to North Atlantic multidecadal variability: A model study. Climate Dyn., 36, 12551276.

    • Search Google Scholar
    • Export Citation
  • Muñoz, E., B. Kirtman, and W. Weijer, 2011: Varied representation of the Atlantic meridional overturning across multidecadal ocean reanalyses. Deep-Sea Res. II, 58, 18481857.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., and R. M. Ponte, 2011: Importance of circulation changes to Atlantic heat storage rates on seasonal and interannual timescales. J. Climate, 25, 350362.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 2006: Oceanic response to surface loading effects neglected in volume-conserving models. J. Phys. Oceanogr., 36, 426–434.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336–6351.

    • Search Google Scholar
    • Export Citation
  • Rauch, H., F. Tung, and C. T. Streibel, 1965: Maximum likelihood estimates of linear dynamics systems. AIAA J., 3, 14451450.

  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64, 779784.

    • Search Google Scholar
    • Export Citation
  • Schneider, B., M. Latif, and A. Schmittner, 2007: Evaluation of different methods to assess model projections of the future evolution of the Atlantic meridional overturning circulation. J. Climate, 20, 21212132.

    • Search Google Scholar
    • Export Citation
  • Spence, P., J. C. Fyfe, A. Montenegro, and A. J. Weaver, 2010: Southern Ocean response to strengthening winds in an eddy-permitting global climate model. J. Climate, 23, 53325343.

    • Search Google Scholar
    • Export Citation
  • Srokosz, M., M. Baringer, H. Bryden, S. Cunningham, T. Delworth, S. Lozier, J. Marotzke, and R. Sutton, 2012: Past, present, and future change in the Atlantic meridional overturning circulation. Bull. Amer. Meteor. Soc., 93, 1663–1676.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Willis, J. K., 2010: Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett., 37, L06602, doi:10.1029/2010GL042372.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., D. Roemmich, and B. Cornuelle, 2004: Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. J. Geophys. Res., 108, 3292, doi:10.1029/2002JC001755.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Xavier, L., M. Becker, A. Cazenave, L. Longuevergne, W. Llovel, and O. C. Rotunno Filho, 2010: Interannual variability in water storage over 20032008 in the Amazon Basin from Grace space gravimetry, in situ river level and precipitation data. Remote Sens. Environ., 114, 16291637, doi:10.1016/j.rse.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2007: Annual, seasonal, and interannual variability of air–sea heat fluxes in the Indian Ocean. J. Climate, 20, 31903209.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett.,37, L16703, doi:10.1029/2010GL044474.

  • Zheng, Y., and B. S. Giese, 2009: Ocean heat transport in Simple Ocean Data Assimilation: Structure and mechanisms. J. Geophys. Res., 114, C11009, doi:10.1029/2008JC005190.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1018 513 31
PDF Downloads 347 69 7