Arctic Ocean Circulation Patterns Revealed by GRACE

Cecilia Peralta-Ferriz Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Cecilia Peralta-Ferriz in
Current site
Google Scholar
PubMed
Close
,
James H. Morison Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by James H. Morison in
Current site
Google Scholar
PubMed
Close
,
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
,
Jennifer A. Bonin College of Marine Science, University of South Florida, Tampa, Florida

Search for other papers by Jennifer A. Bonin in
Current site
Google Scholar
PubMed
Close
, and
Jinlun Zhang Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Jinlun Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Measurements of ocean bottom pressure (OBP) anomalies from the satellite mission Gravity Recovery and Climate Experiment (GRACE), complemented by information from two ocean models, are used to investigate the variations and distribution of the Arctic Ocean mass from 2002 through 2011. The forcing and dynamics associated with the observed OBP changes are explored. Major findings are the identification of three primary temporal–spatial modes of OBP variability at monthly-to-interannual time scales with the following characteristics. Mode 1 (50% of the variance) is a wintertime basin-coherent Arctic mass change forced by southerly winds through Fram Strait, and to a lesser extent through Bering Strait. These winds generate northward geostrophic current anomalies that increase the mass in the Arctic Ocean. Mode 2 (20%) reveals a mass change along the Siberian shelves, driven by surface Ekman transport and associated with the Arctic Oscillation. Mode 3 (10%) reveals a mass dipole, with mass decreasing in the Chukchi, East Siberian, and Laptev Seas, and mass increasing in the Barents and Kara Seas. During the summer, the mass decrease on the East Siberian shelves is due to the basin-scale anticyclonic atmospheric circulation that removes mass from the shelves via Ekman transport. During the winter, the forcing mechanisms include a large-scale cyclonic atmospheric circulation in the eastern-central Arctic that produces mass divergence into the Canada Basin and the Barents Sea. In addition, strengthening of the Beaufort high tends to remove mass from the East Siberian and Chukchi Seas. Supporting previous modeling results, the month-to-month variability in OBP associated with each mode is predominantly of barotropic character.

Corresponding author address: Cecilia Peralta-Ferriz, Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105. E-mail: ferriz@apl.washington.edu

Abstract

Measurements of ocean bottom pressure (OBP) anomalies from the satellite mission Gravity Recovery and Climate Experiment (GRACE), complemented by information from two ocean models, are used to investigate the variations and distribution of the Arctic Ocean mass from 2002 through 2011. The forcing and dynamics associated with the observed OBP changes are explored. Major findings are the identification of three primary temporal–spatial modes of OBP variability at monthly-to-interannual time scales with the following characteristics. Mode 1 (50% of the variance) is a wintertime basin-coherent Arctic mass change forced by southerly winds through Fram Strait, and to a lesser extent through Bering Strait. These winds generate northward geostrophic current anomalies that increase the mass in the Arctic Ocean. Mode 2 (20%) reveals a mass change along the Siberian shelves, driven by surface Ekman transport and associated with the Arctic Oscillation. Mode 3 (10%) reveals a mass dipole, with mass decreasing in the Chukchi, East Siberian, and Laptev Seas, and mass increasing in the Barents and Kara Seas. During the summer, the mass decrease on the East Siberian shelves is due to the basin-scale anticyclonic atmospheric circulation that removes mass from the shelves via Ekman transport. During the winter, the forcing mechanisms include a large-scale cyclonic atmospheric circulation in the eastern-central Arctic that produces mass divergence into the Canada Basin and the Barents Sea. In addition, strengthening of the Beaufort high tends to remove mass from the East Siberian and Chukchi Seas. Supporting previous modeling results, the month-to-month variability in OBP associated with each mode is predominantly of barotropic character.

Corresponding author address: Cecilia Peralta-Ferriz, Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105. E-mail: ferriz@apl.washington.edu
Save
  • Aagaard, K., and E. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14 485–14 498.

    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., and C. W. Hughes, 2008: The relationship between sea-level and bottom pressure variability in an eddy permitting ocean model. Geophys. Res. Lett., 35, L03602, doi:10.1029/2007GL032662.

    • Search Google Scholar
    • Export Citation
  • Bonin, J. A., and D. P. Chambers, 2013: Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation. Geophys. J. Int.,194, 212–229, doi:10.1093/gji/ggt091.

  • Chambers, D. P., 2006a: Observing seasonal steric sea level variations with GRACE and satellite altimetry. J. Geophys. Res., 111, C03010, doi:10.1029/2005JC002914.

    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., 2006b: Evaluation of new GRACE time-variable gravity data over the ocean. Geophys. Res. Lett., 33, L17603, doi:10.1029/2006GL027296.

    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., and J. K. Willis, 2009: Low-frequency exchange of mass between ocean basins. J. Geophys. Res., 114, C11008, doi:10.1029/2009JC005518.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2012: Large decadal decline of the Arctic multiyear ice cover. J. Climate, 25, 1176–1193.

  • Giles, K. A., S. W. Laxon, A. L. Ridout, D. J. Wingham, and S. Bacon, 2012: Western Arctic Ocean freshwater storage increases by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci., 5, 194–197, doi:10.1038/ngeo1379.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and P. Niiler, 1973: The theory of seasonal variability in the ocean. Deep-Sea Res., 20, 141–177.

  • Hibler, W. D., and K. Bryan, 1987: A diagnostic ice-ocean model. J. Phys. Oceanogr., 7, 987–1015.

  • Hu, A., and Coauthors, 2010: Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes. Nat. Geosci., 3, 118–121.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and V. N. Stepanov, 2004: Ocean dynamics associated with rapid J2 fluctuations: Importance of circumpolar modes and identification of a coherent Arctic mode. J. Geophys. Res., 109, C06002, doi:10.1029/2003JC002176.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., M. Maltrud, and M. Hecht, 2008: On the grid dependence of lateral mixing parameterizations for global ocean simulations. Ocean Modell.,20, 115–133, doi:10.1016/j.ocemod.2007.06.010.

  • Jakobsson, M., R. Macnab, L. Mayer, R. Anderson, M. Edwards, K. Hatzly, H.-W. Schenke, and P. Johnson, 2008: An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 35, L07602, doi:10.1029/2008GL033520.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

  • Kanzow, T., F. Flechtner, A. Chave, R. Schmidt, P. Schwintzer, and U. Send, 2005: Seasonal variation of ocean bottom pressure from Gravity Recovery and Climate Experiment (GRACE): Local validation and global patterns. J. Geophys. Res., 110, C09001, doi:10.1029/2004JC002772.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, doi:10.1029/2009GL039035.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and J. Morison, 2011: Dynamic topography of the ice-covered Arctic Ocean from ICESat. Geophys. Res. Lett., 38, L02501, doi:10.1029/2010GL046063.

    • Search Google Scholar
    • Export Citation
  • Lammers, R. B., A. I. Shiklomanov, C. J. Vorosmarty, B. Fekete, and B. J. Peterson, 2001: Assessment of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res., 106 (D4), 3321–3334.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, doi:10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Luther, D., and A. Chave, 1993: Observing integrating variables in the ocean. Proc. Seventh ‘Aha Huliko‘a Hawaiian Winter Workshop on Statistical Methods in Physical Oceanography, Honolulu, HI, SOEST, 103–128.

  • McPhee, M. G., A. Proshutinsky, J. H. Morison, M. Steele, and M. B. Alkire, 2009: Rapid change in freshwater content of the Arctic Ocean. Geophys. Res. Lett., 36, L10602, doi:10.1029/2009GL037525.

    • Search Google Scholar
    • Export Citation
  • Morison, J., 1991: Seasonal variations in the West Spitsbergen Current estimated from bottom pressure measurements. J. Geophys. Res., 96 (C10), 18 381–18 395.

    • Search Google Scholar
    • Export Citation
  • Morison, J., K. Aagaard, and M. Steele, 2000: Recent environmental changes in the Arctic: A review. Arctic, 53 (4), 359–371.

  • Morison, J., M. Steele, T. Kikuchi, K. Falkner, and W. Smethie, 2006: Relaxation of central Arctic Ocean hydrography to pre-1990s climatology. Geophys. Res. Lett., 33, L17604, doi:10.1029/2006GL026826.

    • Search Google Scholar
    • Export Citation
  • Morison, J., J. Wahr, R. Kwok, and C. Peralta-Ferriz, 2007: Recent trends in Arctic Ocean mass distribution revealed by GRACE. Geophys. Res. Lett., 34, L07602, doi:10.1029/2006GL029016.

    • Search Google Scholar
    • Export Citation
  • Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen, and M. Steele, 2012: Changing Arctic Ocean freshwater pathways. Nature, 481,66–70.

    • Search Google Scholar
    • Export Citation
  • Munekane, H., 2007: Ocean mass variations from GRACE and tsunami gauges. J. Mar. Res., 112, B07403, doi:10.1029/2006JB004618.

  • Nguyen, A. T., D. Menemenlis, and R. Kwok, 2011: Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. J. Geophys. Res., 116, C04025, doi:10.1029/2010JC006573.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, and R. F. Cahalan, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2012: The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophys. Res. Lett., 39, L09704, doi:10.1029/2012GL051330.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. Wang, and S. Salo, 2008: The recent Arctic warm period. Tellus, 60, 589–597, doi:10.1111/j.1600-0870.2008.00327.x.

    • Search Google Scholar
    • Export Citation
  • Paulson, A., S. Zhong, and J. Wahr, 2007: Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int.,171, 497–508, doi:10.1111/j.1365-246X.2007.03556.x.

  • Peralta-Ferriz, C., and J. Morison, 2010: Understanding the annual cycle of the Arctic Ocean bottom pressure. Geophys. Res. Lett., 37, L10603, doi:10.1029/2010GL042827.

    • Search Google Scholar
    • Export Citation
  • Peralta-Ferriz, C., J. Morison, J. M. Wallace, and J. Zhang, 2011: A basin-coherent mode of sub-monthly variability in Arctic Ocean bottom. Geophys. Res. Lett., 38, L14606, doi:10.1029/2011GL048142.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2010: Arctic Ocean warming contributes to reduced polar ice cap. Phys. Oceanogr., 40, 2743–2756.

  • Ponte, R. M., 1999: A preliminary model study of the large-scale seasonal cycle in bottom pressure over the global ocean. J. Geophys. Res., 104 (C1), 1289–1300.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A. R., and Coauthors, 2009: Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res., 114, C00A10, doi:10.1029/2008JC005104.

    • Search Google Scholar
    • Export Citation
  • Rabe, B., and Coauthors, 2011: An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006–2008 period. Deep-Sea Res. I, 58, 173–185.

    • Search Google Scholar
    • Export Citation
  • Rietbroek, R., P. LeGrand, B. Wouters, J.-M. Lemoine, G. Ramillien, and C. W. Hughes, 2006: Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet-Kerguelen region. Geophys. Res. Lett., 33, L21601, doi:10.1029/2006GL027452.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., and J. M. Wallace, 2004: Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, doi:10.1029/2004GL019492.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 2648–2663.

  • Roussenov, V. M., R. G. Williams, C. W. Hughes, and R. J. Bingham, 2008: Boundary wave communication of bottom pressure and overturning changes for the North Atlantic. J. Geophys. Res., 113, C08042, doi:10.1029/2007JC004501.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111, C11010, doi:10.1029/2005JC003424.

    • Search Google Scholar
    • Export Citation
  • Steele, M., and T. Boyd, 1998: Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res., 103 (C5), 10 419–10 435.

    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Morison, W. Ermold, I. Rigor, M. Ortmeyer, and K. Shimada, 2004: Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res., 109, C02027, doi:10.1029/2003JC002009.

    • Search Google Scholar
    • Export Citation
  • Steele, M., W. Ermold, and J. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, doi:10.1029/2007GL031651.

    • Search Google Scholar
    • Export Citation
  • Stepanov, V. N., and C. W. Hughes, 2006: Propagation of signals in basin-scale ocean bottom pressure from a barotropic model. J. Geophys. Res., 111, C12002, doi:10.1029/2005JC003450.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., A. Frei, J. McCreight, and D. Ghatak, 2008: Arctic sea-ice variability revisited. Ann. Glaciol., 48, 71–81.

  • Swenson, S. C., and J. Wahr, 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300.

    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., R. M. Ponte, and D. Stammer, 2007: Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophys. Res. Lett., 34, L03608, doi:10.1029/2006GL028588.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., F. W. Landerer, and S. A. Kirillov, 2013: The genesis of sea level variability in the Barents Sea. Cont. Shelf Res., 66, 92–104, doi:10.1016/j.csr.2013.07.007.

    • Search Google Scholar
    • Export Citation
  • Wahr, J. M., M. Molenaar, and F. O. Bryan, 1998: Time variability of the Earth’s gravity field: Hydrological and oceanic effect and their possible detection using GRACE. J. Geophys. Res., 103, 30 205–30 229.

    • Search Google Scholar
    • Export Citation
  • Wearn, R. B., and D. J. Baker, 1980: Bottom pressure measurements across the Antarctic Circumpolar Current and their relation to wind. Deep-Sea Res., 27, 875–888.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845–861.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2440 1279 66
PDF Downloads 811 177 23