The Climatology and Interannual Variability of the East Asian Winter Monsoon in CMIP5 Models

Hainan Gong Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Hainan Gong in
Current site
Google Scholar
PubMed
Close
,
Lin Wang Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lin Wang in
Current site
Google Scholar
PubMed
Close
,
Wen Chen Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wen Chen in
Current site
Google Scholar
PubMed
Close
,
Renguang Wu Institute of Space and Earth Information Science, and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
,
Ke Wei Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Ke Wei in
Current site
Google Scholar
PubMed
Close
, and
Xuefeng Cui State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Xuefeng Cui in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper the model outputs from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) are used to examine the climatology and interannual variability of the East Asian winter monsoon (EAWM). The multimodel ensemble (MME) is able to reproduce reasonably well the circulation features of the EAWM. The simulated surface air temperature still suffers from a cold bias over East Asia, but this bias is reduced compared with CMIP phase 3 models. The intermodel spread is relatively small for the large-scale circulations, but is large for the lower-tropospheric meridional wind and precipitation along the East Asian coast. The interannual variability of the EAWM-related circulations can be captured by most of the models. A general bias is that the simulated variability is slightly weaker than in the observations. Based on a selected dynamic EAWM index, the patterns of the EAWM-related anomalies are well reproduced in MME although the simulated anomalies are slightly weaker than the observations. One general bias is that the northeasterly anomalies over East Asia cannot be captured to the south of 30°N. This bias may arise both from the inadequacies of the EAWM index and from the ability of models to capture the EAWM-related tropical–extratropical interactions. The ENSO–EAWM relationship is then evaluated and about half of the models can successfully capture the observed ENSO–EAWM relationship, including the significant negative correlation between Niño-3.4 and EAWM indices and the anomalous anticyclone (or cyclone) over the northwestern Pacific. The success of these models is attributed to the reasonable simulation of both ENSO’s spatial structure and its strength of interannual variability.

Corresponding author address: Wen Chen, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 2718, Beijing 100190, China. E-mail: cw@post.iap.ac.cn

Abstract

In this paper the model outputs from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) are used to examine the climatology and interannual variability of the East Asian winter monsoon (EAWM). The multimodel ensemble (MME) is able to reproduce reasonably well the circulation features of the EAWM. The simulated surface air temperature still suffers from a cold bias over East Asia, but this bias is reduced compared with CMIP phase 3 models. The intermodel spread is relatively small for the large-scale circulations, but is large for the lower-tropospheric meridional wind and precipitation along the East Asian coast. The interannual variability of the EAWM-related circulations can be captured by most of the models. A general bias is that the simulated variability is slightly weaker than in the observations. Based on a selected dynamic EAWM index, the patterns of the EAWM-related anomalies are well reproduced in MME although the simulated anomalies are slightly weaker than the observations. One general bias is that the northeasterly anomalies over East Asia cannot be captured to the south of 30°N. This bias may arise both from the inadequacies of the EAWM index and from the ability of models to capture the EAWM-related tropical–extratropical interactions. The ENSO–EAWM relationship is then evaluated and about half of the models can successfully capture the observed ENSO–EAWM relationship, including the significant negative correlation between Niño-3.4 and EAWM indices and the anomalous anticyclone (or cyclone) over the northwestern Pacific. The success of these models is attributed to the reasonable simulation of both ENSO’s spatial structure and its strength of interannual variability.

Corresponding author address: Wen Chen, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 2718, Beijing 100190, China. E-mail: cw@post.iap.ac.cn
Save
  • Boo, K.-O., G. Martin, A. Sellar, C. Senior, and Y.-H. Byun, 2011: Evaluating the East Asian monsoon simulation in climate models. J. Geophys. Res., 116, D01109, doi:10.1029/2010JD014737.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Z. Wang, and H. Harry, 2006: The Asian winter monsoon. The Asia Monsoon, B. Wang, Ed., Praxis, 89–127.

  • Chen, W., and L. H. Kang, 2006: Linkage between the Arctic Oscillation and winter climate over East Asia on the interannual timescale: Roles of quasi-stationary planetary waves (in Chinese). Chin. J. Atmos. Sci., 30, 863870.

    • Search Google Scholar
    • Export Citation
  • Chen, W., H. F. Graf, and R. H. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 4860.

    • Search Google Scholar
    • Export Citation
  • Chen, W., S. Yang, and R.-H. Huang, 2005: Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res., 110, D14110, doi:10.1029/2004JD005669.

    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635.

    • Search Google Scholar
    • Export Citation
  • Cheung, H. N., W. Zhou, H. Y. Mok, and M. C. Wu, 2012: Relationship between Ural–Siberian blocking and the East Asian winter monsoon in relation to the Arctic Oscillation and the El Niño–Southern Oscillation. J. Climate, 25, 42424257.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184187.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1994: Monsoon over China. Kluwer Academic, 420 pp.

  • Ding, Y., and T. N. Krishnamurti, 1987: Heat budget of the Siberian high and the winter monsoon. Mon. Wea. Rev., 115, 24282449.

  • Feng, J., L. Wang, W. Chen, S. K. Fong, and K. C. Leong, 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res., 115, D24122, doi:10.1029/2010JD014761.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 1991: Approaches to the simulation of regional climate change: A review. Rev. Geophys., 29, 191216.

  • Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076.

  • Hori, M. E., and H. Ueda, 2006: Impact of global warming on the East Asian winter monsoon as revealed by nine coupled atmosphere–ocean GCMs. Geophys. Res. Lett., 33, L03713, doi:10.1029/2005GL024961.

    • Search Google Scholar
    • Export Citation
  • Hu, Z. Z., L. Bengtsson, and K. Arpe, 2000: Impact of global warming on the Asian winter monsoon in a coupled GCM. J. Geophys. Res., 105 (D4), 46074624.

    • Search Google Scholar
    • Export Citation
  • Huang, R. H., J. L. Chen, L. Wang, and Z. D. Lin, 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910942.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. J. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711726.

    • Search Google Scholar
    • Export Citation
  • Ji, L., S. Sun, K. Arpe, and L. Bengtsson, 1997: Model study on the interannual variability of Asian winter monsoon and its influence. Adv. Atmos. Sci., 14, 122.

    • Search Google Scholar
    • Export Citation
  • Jiang, D., H. Wang, and X. Lang, 2005: Evaluation of East Asian climatology as simulated by seven coupled models. Adv. Atmos. Sci., 22, 479495.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, W. Wang, and Z. Gao, 2013: Dynamical prediction of the East Asian winter monsoon by the NCEP Climate Forecast System. J. Geophys. Res. Atmos., 118, 13121328, doi:10.1002/jgrd.50193.

    • Search Google Scholar
    • Export Citation
  • Kang, L. H., W. Chen, and K. Wei, 2006: The interdecadal variation of winter temperature in China and its relation to the anomalies in atmospheric general circulation (in Chinese). Climatic Environ. Res., 11, 330339.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.

  • Kripalani, R. H., J. H. Oh, and H. S. Chaudhari, 2007: Response of the East Asian summer monsoon to doubled atmospheric CO2: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 87, 128.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and M.-T. Li, 1984: The monsoon of East Asia and its global associations—A survey. Bull. Amer. Meteor. Soc., 65, 114125.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and S. Yang, 2010: A dynamical index for the East Asian winter monsoon. J. Climate, 23, 42554262.

  • Lin, J.-L., K. M. Weickman, G. N. Kiladis, B. E. Mapes, S. D. Schubert, M. J. Suarez, J. T. Bacmeister, and M.-I. Lee, 2008: Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J. Climate, 21, 45414567.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Sohn, S.-J., C.-Y. Tam, and C.-K. Park, 2011: Leading modes of East Asian winter climate variability and their predictability: An assessment of the APCC multi-model ensemble. J. Meteor. Soc. Japan, 89, 455474.

    • Search Google Scholar
    • Export Citation
  • Sun, B., and C. Li, 1997: Relationship between the disturbances of East Asian trough and tropical convective activities in boreal winter. Chin. Sci. Bull., 42, 500504.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci., 62, 44414449.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 (D7), 71837192.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090.

    • Search Google Scholar
    • Export Citation
  • Wang, B., I.-S. Kang, and J.-Y. Lee, 2004: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803818.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Z. Wu, C.-P. Chang, J. Liu, J. Li, and T. Zhou, 2010: Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes. J. Climate, 23, 14951512.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: How well do existing indices measure the strength of the East Asian winter monsoon? Adv. Atmos. Sci., 27, 855870.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate,in press.

  • Wang, L., W. Chen, and R. H. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, doi:10.1029/2008GL035287.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, and R. Huang, 2009: Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway. J. Climate, 22, 600614.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, J. C. L. Chan, D. Barriopedro, and R. Huang, 2010: Effect of the climate shift around mid-1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int. J. Climatol., 30, 153158.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Nitta, 1999: Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J. Climate, 12, 494510.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 (C7), 14 45114 510.

    • Search Google Scholar
    • Export Citation
  • Wei, K., and Q. Bao, 2012: Projections of the East Asian winter monsoon under the IPCC AR5 scenarios using a coupled model: IAP_FGOALS. Adv. Atmos. Sci., 29, 12001214.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, doi:10.1029/2002GL015373.

    • Search Google Scholar
    • Export Citation
  • Yang, S., K.-M. Lau, and K.-M. Kim, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306325.

    • Search Google Scholar
    • Export Citation
  • Zeng, G., W. C. Wang, Z. B. Sun, and Z. X. Li, 2011: Atmospheric circulation cells associated with anomalous East Asian winter monsoon. Adv. Atmos. Sci., 28, 913926.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ‘91/92 events. J. Meteor. Soc. Japan, 74, 4962.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997a: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP–NCAR reanalysis. Mon. Wea. Rev., 125, 26052619.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 1997b: East Asian winter monsoon: Results from eight AMIP models. Climate Dyn., 13, 797820.

  • Zhou, B. Z., and Coauthors, 2011: The great 2008 Chinese ice storm: Its socioeconomic–ecological impact and sustainability lessons learned. Bull. Amer. Meteor. Soc., 92, 4760.

    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 11591173.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., X. Wang, T. J. Zhou, C. Li, and J. C. L. Chan, 2007: Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteor. Atmos. Phys., 98, 283293.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 39783991.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2418 1261 44
PDF Downloads 961 148 11