The Influence of Recurrent Modes of Climate Variability on the Occurrence of Winter and Summer Extreme Temperatures over North America

Paul C. Loikith Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Paul C. Loikith in
Current site
Google Scholar
PubMed
Close
and
Anthony J. Broccoli Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey

Search for other papers by Anthony J. Broccoli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of the Pacific–North American (PNA) pattern, the northern annular mode (NAM), and the El Niño–Southern Oscillation (ENSO) on extreme temperature days and months over North America is examined. Associations between extreme temperature days and months are strongest with the PNA and NAM and weaker for ENSO. In general, the association with extremes tends to be stronger on monthly than daily time scales and for winter as compared to summer. Extreme temperatures are associated with the PNA and NAM in the vicinity of the centers of action of these circulation patterns; however, many extremes also occur on days when the amplitude and polarity of these patterns do not favor their occurrence. In winter, synoptic-scale, transient weather disturbances are important drivers of extreme temperature days; however, many of these smaller-scale events are concurrent with amplified PNA or NAM patterns. Associations are weaker in summer when other physical mechanisms affecting the surface energy balance, such as anomalous soil moisture content, also influence the occurrence of extreme temperatures.

Corresponding author address: Paul C. Loikith, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: paul.c.loikith@jpl.nasa.gov

Abstract

The influence of the Pacific–North American (PNA) pattern, the northern annular mode (NAM), and the El Niño–Southern Oscillation (ENSO) on extreme temperature days and months over North America is examined. Associations between extreme temperature days and months are strongest with the PNA and NAM and weaker for ENSO. In general, the association with extremes tends to be stronger on monthly than daily time scales and for winter as compared to summer. Extreme temperatures are associated with the PNA and NAM in the vicinity of the centers of action of these circulation patterns; however, many extremes also occur on days when the amplitude and polarity of these patterns do not favor their occurrence. In winter, synoptic-scale, transient weather disturbances are important drivers of extreme temperature days; however, many of these smaller-scale events are concurrent with amplified PNA or NAM patterns. Associations are weaker in summer when other physical mechanisms affecting the surface energy balance, such as anomalous soil moisture content, also influence the occurrence of extreme temperatures.

Corresponding author address: Paul C. Loikith, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: paul.c.loikith@jpl.nasa.gov
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2004: The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett., 31, L02202, doi:10.1029/2003GL018857.

    • Search Google Scholar
    • Export Citation
  • Brown, P. J., R. S. Bradley, and F. T. Keimig, 2010: Changes in extreme climate indices for the Northeastern United States, 1870–2005. J. Climate, 203, 65556572.

    • Search Google Scholar
    • Export Citation
  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming world. Geophys. Res. Lett., 37, L20704, doi:10.1029/2010GL044613.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., P. A. Stott, S. Brown, G. Hegerl, and J. Caesar, 2005: Detection of changes in temperature extremes during the second half of the 20th century. Geophys. Res. Lett., 32, L20716, doi:10.1029/2005GL023885.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., P. A. Stott, and S. Brown, 2011: The role of human activity in the recent warming of extremely warm daytime temperatures. J. Climate, 24, 19221930.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099.

    • Search Google Scholar
    • Export Citation
  • Frich, P., V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United State: Observations and model results. J. Climate, 11, 15751586.

    • Search Google Scholar
    • Export Citation
  • Griffiths, M. L., and R. S. Bradley, 2007: Variations of twentieth-century temperature and precipitation extreme indicators in the northeast United States. J. Climate, 20, 54015417.

    • Search Google Scholar
    • Export Citation
  • Guirguis, K., A. Gershunov, R. Schwartz, and S. Bennett, 2011: Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys. Res. Lett., 38, L17701, doi:10.1029/2011GL048762.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., A. Leetmaa, and V. E. Kousky, 2002: Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 15, 15551572.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climate Significance an Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

  • Kalnay, E., and Coauthors, 1996: NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc.,77, 437–471.

  • Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 38723889.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090.

    • Search Google Scholar
    • Export Citation
  • Kodra, E., K. Steinhaeuser, and A. R. Ganguly, 2011: Persisting cold extremes under 21st‐century warming scenarios. Geophys. Res. Lett., 38, L08705, doi:10.1029/2011GL047103.

    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 99 (D7), 14 41514 428.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

  • Meehl, G. A., C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel, 2009: Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett., 36, L23701, doi:10.1029/2009GL040736.

    • Search Google Scholar
    • Export Citation
  • Morak, S., G. C. Hegerl, and J. Kenyon, 2011: Detectable regional changes in the number of warm nights. Geophys. Res. Lett., 38, L17703, doi:10.1029/2011GL048531.

    • Search Google Scholar
    • Export Citation
  • Morak, S., G. C. Hegerl, and N. Christidis, 2013: Detectable changes in the frequency of temperature extremes. J. Climate, 26, 15611574.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., and J. M. Wallace, 2004: A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Climate, 17, 37283744.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17 905–17 909, doi:10.1073/pnas.1101766108.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.

    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution for the European heatwave of 2003. Nature, 432, 610614.

  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15, 23402358.

  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes, an intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185211.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Vavrus, S., J. E. Walsh, W. L. Chapman, and D. Portis, 2006: The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol., 26, 11331147.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wang, C., H. Liu, and S.-K. Lee, 2010: The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett., 11, 161168.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and L. O. Mearns, 2002: The influence of the North Atlantic–Arctic Oscillation on mean, variance, and extremes of temperature in the northeastern United States and Canada. J. Climate, 15, 35863600.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi:10.1029/2012GL052483.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., X. Zhang, and Y. Feng, 2011: Anthropogenic influence on long return period daily temperature extremes at regional scales. J. Climate, 24, 881892.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1463 807 55
PDF Downloads 658 138 27