Boundary Layer Convergence Induced by Strong Winds across a Midlatitude SST Front

Thomas Kilpatrick Department of Oceanography, and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Thomas Kilpatrick in
Current site
Google Scholar
PubMed
Close
,
Niklas Schneider Department of Oceanography, and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Niklas Schneider in
Current site
Google Scholar
PubMed
Close
, and
Bo Qiu Department of Oceanography, and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Bo Qiu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent studies indicate that the influence of midlatitude SST fronts extends through the marine atmospheric boundary layer (MABL) into the free atmosphere, with implications for climate variability. To better understand the mechanisms of this ocean-to-atmosphere influence, SST-induced MABL convergence is explored here with the Weather Research and Forecasting mesoscale model in an idealized, dry, two-dimensional configuration, for winds crossing from cold to warm SST and from warm to cold SST.

For strong cross-front winds, O(10 m s−1), changes in the turbulent mixing and MABL depth across the SST front lead to MABL depth-integrated convergence in the cold-to-warm case and depth-integrated divergence in the warm-to-cold case. The turbulent stress divergence term changes over a shorter length scale than the pressure gradient and Coriolis terms, such that the MABL response directly above the SST front is governed by nonrotating, internal boundary layer–like physics, which are consistent with the vertical mixing mechanism. An important consequence is that the increment in the cross-front surface stress diagnoses the vertical motion at the top of the MABL. These physics are at variance with some previously proposed SST frontal MABL models in which pressure adjustments determine the MABL convergence.

The SST-induced MABL convergence results in vertical motion that excites a stationary internal gravity wave in the free atmosphere, analogous to a mountain wave. For a 15 m s−1 cross-front wind, the gravity wave forced by an SST increase of 3°C over 200 km is comparable to that forced by an 80-m change in topography.

International Pacific Research Center publication number 1034 and School of Ocean and Earth Science and Technology publication number 9055.

Corresponding author address: Thomas Kilpatrick, Scripps Institution of Oceanography/UCSD, 9500 Gilman Dr., #0206, La Jolla, CA 92093-0206. E-mail: thomaski@hawaii.edu

This article is included in the Climate Implications of Frontal Scale Air-Sea Interaction special collection.

Abstract

Recent studies indicate that the influence of midlatitude SST fronts extends through the marine atmospheric boundary layer (MABL) into the free atmosphere, with implications for climate variability. To better understand the mechanisms of this ocean-to-atmosphere influence, SST-induced MABL convergence is explored here with the Weather Research and Forecasting mesoscale model in an idealized, dry, two-dimensional configuration, for winds crossing from cold to warm SST and from warm to cold SST.

For strong cross-front winds, O(10 m s−1), changes in the turbulent mixing and MABL depth across the SST front lead to MABL depth-integrated convergence in the cold-to-warm case and depth-integrated divergence in the warm-to-cold case. The turbulent stress divergence term changes over a shorter length scale than the pressure gradient and Coriolis terms, such that the MABL response directly above the SST front is governed by nonrotating, internal boundary layer–like physics, which are consistent with the vertical mixing mechanism. An important consequence is that the increment in the cross-front surface stress diagnoses the vertical motion at the top of the MABL. These physics are at variance with some previously proposed SST frontal MABL models in which pressure adjustments determine the MABL convergence.

The SST-induced MABL convergence results in vertical motion that excites a stationary internal gravity wave in the free atmosphere, analogous to a mountain wave. For a 15 m s−1 cross-front wind, the gravity wave forced by an SST increase of 3°C over 200 km is comparable to that forced by an 80-m change in topography.

International Pacific Research Center publication number 1034 and School of Ocean and Earth Science and Technology publication number 9055.

Corresponding author address: Thomas Kilpatrick, Scripps Institution of Oceanography/UCSD, 9500 Gilman Dr., #0206, La Jolla, CA 92093-0206. E-mail: thomaski@hawaii.edu

This article is included in the Climate Implications of Frontal Scale Air-Sea Interaction special collection.

Save
  • Adamson, D. S., S. E. Belcher, B. J. Hoskins, and R. S. Plant, 2006: Boundary-layer friction in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 132, 101124, doi:10.1256/qj.04.145.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2007: Boundary layer mechanisms in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 133, 503515, doi:10.1002/qj.30.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and M. J. P. Cullen, 2012: Balanced models of boundary-layer convergence. Quart. J. Roy. Meteor. Soc., 138, 14521464, doi:10.1002/qj.1877.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Preprints, Third Symp. on Atmospheric Turbulence, Diffusion and Air Quality, Amer. Meteor. Soc., Raleigh, NC, 46–69.

  • Bracewell, R. N., 2000: The Fourier Transform and Its Applications. McGraw-Hill, 616 pp.

  • Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 18471853.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 17841805.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 62776291.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1, 3854.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23 (4), 5269, doi:10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495517.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and N. Blunt, 2011: A new mechanism for ocean–atmosphere coupling in midlatitudes. Quart. J. Roy. Meteor. Soc., 137, 10951101, doi:10.1002/qj.814.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.

  • Feliks, Y., M. Ghil, and E. Simonnet, 2004: Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 61, 961981.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., M. Ghil, and E. Simonnet, 2007: Low-frequency variability in the midlatitude baroclinic atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 64, 97116.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., E. Tziperman, and B. Farrell, 2010: Nonnormal frontal dynamics. J. Atmos. Sci., 67, 12181231.

  • Feliks, Y., M. Ghil, and A. W. Robertson, 2011: The atmospheric circulation over the North Atlantic as induced by the SST field. J. Climate, 24, 522542.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1990: The internal boundary layer—A review. Bound.-Layer Meteor., 50, 171203.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Hashizume, H., S.-P. Xie, M. Fujiwara, M. Shiotani, T. Watanabe, Y. Tanimoto, W. T. Liu, and K. Takeuchi, 2002: Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific. J. Climate, 15, 33793393.

    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 15001506.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic, 535 pp.

  • Joyce, T. M., Y.-O. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and path shifts of the Gulf Stream and the Kuroshio Extension. J. Climate, 22, 31773192.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78107.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., S. Minobe, and S.-P. Xie, 2010: Precipitation response to the Gulf Stream in an atmospheric GCM. J. Climate, 23, 36763698.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and P. Müller, 1992: Normal-mode decomposition of small-scale oceanic motions. J. Phys. Oceanogr., 22, 15831595.

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1975: The influence of momentum advections on a well-mixed layer. Quart. J. Roy. Meteor. Soc., 101, 111, doi:10.1002/qj.49710142702.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and S.-U. Park, 1976: The influence of boundary layer pumping on synoptic-scale flow. J. Atmos. Sci., 33, 15051520.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Kuwano-Yoshida, and K. Takaya, 2009: Air–sea heat exchanges characteristic of a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate,22, 6515–6535.

  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 27062723.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2010a: The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23, 255281.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., S. K. Esbensen, N. Thum, R. M. Samelson, and D. B. Chelton, 2010b: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559581.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 59165942.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., N. Schneider, and S. Chen, 2007: Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J. Phys. Oceanogr., 20, 36023620.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., E. D. Skyllingstad, D. B. Chelton, S. K. Esbensen, L. W. O’Neill, and N. Thum, 2006: On the coupling of wind stress and sea surface temperature. J. Climate, 19, 15571566.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 17931814.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., S. Minobe, T. Asai, and M. Inatsu, 2012: Influence of the Kuroshio in the East China Sea on the early summer baiu rain. J. Climate, 25, 66276645.

    • Search Google Scholar
    • Export Citation
  • Shimada, T., and S. Minobe, 2011: Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data. Geophys. Res. Lett., 38, L06704, doi:10.1029/2010GL046625.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Skyllingstad, E. D., D. Vickers, L. Mahrt, and R. Samelson, 2007: Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123, 219237, doi:10.1007/s10546-006-9127-8.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S.-P. Xie, and Y. Wang, 2003: Numerical simulation of atmospheric response to Pacific tropical instability waves. J. Climate, 16, 37233741.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S.-P. Xie, Y. Wang, S. K. Esbensen, and D. Vickers, 2005: Numerical simulation of boundary layer structure and cross-equatorial flow in the eastern Pacific. J. Atmos. Sci., 62, 18121830.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Song, Q., P. Cornillon, and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res., 111, C12006, doi:10.1029/2006JC003680.

    • Search Google Scholar
    • Export Citation
  • Song, Q., D. B. Chelton, S. K. Esebensen, and L. W. O’Neill, 2008: Observations and modeling of SST influence on surface winds and the troposphere. Proc. Fifth Annual CoRP Science Symp., Corvallis, OR, Oregon State University. [Available online at http://cioss.coas.oregonstate.edu/CIOSS/workshops/CoRP_symposium_08/Presentations/19_Song.pdf.]

  • Song, Q., D. B. Chelton, S. K. Esbensen, N. Thum, and L. W. O’Neill, 2009: Coupling between sea surface temperature and low-level winds in mesoscale numerical models. J. Climate, 22, 146164.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007: Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J. Climate, 20, 37853801.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and A. A. M. Holtslag, 2009: Analysis of model results for the turning of the wind and related momentum fluxes in the stable boundary layer. Bound.-Layer Meteor., 132, 261277, doi:10.1007/s10546-009-9395-1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, and S.-P. Xie, 2009: Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 65366560.

    • Search Google Scholar
    • Export Citation
  • Takatama, K., S. Minobe, M. Inatsu, and R. J. Small, 2012: Diagnostics for near-surface wind convergence/divergence response to the Gulf Stream in a regional atmospheric model. Atmos. Sci. Lett., 13, 1621, doi:10.1002/asl.355.

    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., T. Kanenari, H. Tokinaga, and S.-P. Xie, 2011: Sea level pressure minimum along the Kuroshio and its extension. J. Climate, 24, 44194434.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, S.-P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 42414260.

    • Search Google Scholar
    • Export Citation
  • Wai, M. M., and S. A. Stage, 1989: Dynamical analyses of marine atmospheric boundary layer structure near the Gulf Stream oceanic front. Quart. J. Roy. Meteor. Soc., 115, 2944.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208.

  • Xu, H., H. Tokinaga, and S.-P. Xie, 2010: Atmospheric effects of the Kuroshio large meander during 2004–05. J. Climate, 23, 47044715.

    • Search Google Scholar
    • Export Citation
  • Xu, H., M. Xu, S.-P. Xie, and Y. Wang, 2011: Deep atmospheric response to the spring Kuroshio Current over the East China Sea. J. Climate, 24, 4959–4972.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3604 2734 91
PDF Downloads 789 169 18