Regional Climate Modeling over the Maritime Continent. Part I: New Parameterization for Convective Cloud Fraction

Rebecca L. Gianotti Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Rebecca L. Gianotti in
Current site
Google Scholar
PubMed
Close
and
Elfatih A. B. Eltahir Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Elfatih A. B. Eltahir in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes a new method for parameterizing convective cloud fraction that can be used within large-scale climate models, and evaluates the new method using the Regional Climate Model, version 3 (RegCM3), coupled to the land surface scheme Integrated Biosphere Simulator (IBIS). The horizontal extent of convective cloud cover is calculated by utilizing a relationship between the simulated amount of convective cloud water and typical observations of convective cloud water density. This formulation not only provides a physically meaningful basis for the simulation of convective cloud cover, but it is also spatially and temporally variable and independent of model resolution, rendering it generally applicable for large-scale climate models. Simulations over the Maritime Continent show that the new method allows for simulation of an essential convective–radiative feedback, which was absent in the existing version of RegCM3–IBIS, such that moist convection not only responds to diurnal variability at the earth’s surface but also impacts the solar radiation received at the surface via cumulus cloud production. The impact on model performance was mixed, but it is considered that appropriate representation of the convective–radiative feedback and improved physical realism resulting from the new cloud fraction parameterization will likely have positive benefits elsewhere. The role of convective rainfall production in the convective–radiative feedback and a new parameterization for convective autoconversion are addressed in Part II of this paper series.

Corresponding author address: Rebecca L. Gianotti, MIT Room 48-207, 15 Vassar Street, Cambridge, MA 02139. E-mail: rlg@alum.mit.edu

Abstract

This paper describes a new method for parameterizing convective cloud fraction that can be used within large-scale climate models, and evaluates the new method using the Regional Climate Model, version 3 (RegCM3), coupled to the land surface scheme Integrated Biosphere Simulator (IBIS). The horizontal extent of convective cloud cover is calculated by utilizing a relationship between the simulated amount of convective cloud water and typical observations of convective cloud water density. This formulation not only provides a physically meaningful basis for the simulation of convective cloud cover, but it is also spatially and temporally variable and independent of model resolution, rendering it generally applicable for large-scale climate models. Simulations over the Maritime Continent show that the new method allows for simulation of an essential convective–radiative feedback, which was absent in the existing version of RegCM3–IBIS, such that moist convection not only responds to diurnal variability at the earth’s surface but also impacts the solar radiation received at the surface via cumulus cloud production. The impact on model performance was mixed, but it is considered that appropriate representation of the convective–radiative feedback and improved physical realism resulting from the new cloud fraction parameterization will likely have positive benefits elsewhere. The role of convective rainfall production in the convective–radiative feedback and a new parameterization for convective autoconversion are addressed in Part II of this paper series.

Corresponding author address: Rebecca L. Gianotti, MIT Room 48-207, 15 Vassar Street, Cambridge, MA 02139. E-mail: rlg@alum.mit.edu
Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9, 28022820.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and K. A. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection: Evaluation using TOGA COARE data. J. Atmos. Sci., 58, 31583183.

    • Search Google Scholar
    • Export Citation
  • Chow, K. C., J. C. L. Chan, J. S. Pal, and F. Giorgi, 2006: Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophys. Res. Lett., 33, L24709, doi:10.1029/2006GL028026.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951.

    • Search Google Scholar
    • Export Citation
  • Davies, H., and R. Turner, 1977: Updating prediction models by dynamical relaxation: An examination of the technique. Quart. J. Roy. Meteor. Soc., 103, 225245.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1993: Estimation of the fractional coverage of rainfall in climate models. J. Climate, 6, 639644.

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132335.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 17661782.

    • Search Google Scholar
    • Export Citation
  • Foster, J., M. Bevis, and W. Raymond, 2006: Precipitable water and the lognormal distribution. J. Geophys. Res., 111, D15102, doi:10.1029/2005JD006731.

    • Search Google Scholar
    • Export Citation
  • Francisco, R. V., J. Argete, F. Giorgi, J. Pal, X. Bi, and W. J. Gutowski, 2006: Regional model simulation of summer rainfall over the Philippines: Effect of choice of driving fields and ocean flux schemes. Theor. Appl. Climatol., 86, 215227.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733.

    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., 2012: Convective cloud and rainfall processes over the Maritime Continent: Simulation and analysis of the diurnal cycle. Ph.D. dissertation, Massachusetts Institute of Technology, 306 pp.

  • Gianotti, R. L., and E. A. B. Eltahir, 2014: Regional climate modeling over the Maritime Continent. Part II: New parameterization for autoconversion of convective rainfall. J. Climate, 27, 15041523.

    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., D. Zhang, and E. A. B. Eltahir, 2012: Assessment of the Regional Climate Model version 3 over the Maritime Continent using different cumulus parameterization and land surface schemes. J. Climate, 25, 638656.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 28142832.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729.

    • Search Google Scholar
    • Export Citation
  • Global Soil Data Task, IGDP-DIS, 2000: Global Soil Data Products. International Geosphere-Biosphere Programme, Data and Information System (IGDP-DIS), CD-ROM. [Available online at http://daac.ornl.gov/SOILS/igbp.html.]

  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: Description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Rep. NCAR/TN-398+STR, 117 pp.

  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., E. I. F. de Bruijn, and H.-L. Pan, 1990: A high-resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 15611575.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Iassamen, A., H. Sauvageot, N. Jeannin, and S. Ameur, 2009: Distribution of tropospheric water vapor in clear and cloudy conditions from microwave radiometric profiling. J. Appl. Meteor. Climatol., 48, 600615.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2006: Time-space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19, 12381260.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2008: Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. J. Climate, 21, 28522868.

    • Search Google Scholar
    • Export Citation
  • Kothe, S., and B. Ahrens, 2010: On the radiation budget in regional climate simulations for West Africa. J. Geophys. Res., 115, D23120, doi:10.1029/2010JD014331.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and C.-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465472.

    • Search Google Scholar
    • Export Citation
  • Lin, W. Y., and M. H. Zhang, 2004: Evaluation of clouds and their radiative effects simulated by the NCAR Community Atmospheric Model against satellite observations. J. Climate, 17, 33023318.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19, 12741301.

    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848.

  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp.

  • Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105 (D24), 29 57929 594.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., 1999: Estimating historical changes in land cover: North American croplands from 1850 to 1992. Global Ecol. Biogeogr., 8, 381396.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131, 639673.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. Rayner, T. Smith, D. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5 Part 1: Model description. Max-Planck-Institut für Meteorologie Rep. 349, 140 pp.

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Elsevier, 293 pp.

  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., S. K. Gupta, S. J. Cox, J. C. Mikovitz, T. Zhang, and L. M. Hinkelman, 2011: 24.5-Year SRB data set released. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 10–12.

  • Sui, C.-H., X. Li, K.-M. Lau, and D. Adamec, 1997: Multiscale air–sea interactions during TOGA COARE. Mon. Wea. Rev., 125, 448462.

  • Sundqvist, H., E. Berge, and J. E. Kristjánsson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1988: Parameterization of cumulus convection in large-scale models. Physically-Based Modelling and Simulation of Climate and Climatic Change, M. E. Schlesinger, Ed., D. Reidel, 375–431.

  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061.

  • United States Geological Survey, cited 1996: Global 30-arc second elevation dataset (GTOPO30). [Available online online at http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info.]

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012. [Dataset available online at http://www.ecmwf.int/research/era/do/get/era-40.]

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567585.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7, 449457.

  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9, 17121730.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA coupled ocean–atmosphere response experiment. J. Climate, 9, 19591990.

    • Search Google Scholar
    • Export Citation
  • Winter, J. M., J. S. Pal, and E. A. B. Eltahir, 2009: Coupling of Integrated Biosphere Simulator to Regional Climate Model version 3. J. Climate, 22, 27432757.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 30843102.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp. [Available online at http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1541 1112 71
PDF Downloads 241 57 7