Climatic Impacts of Land-Use Change due to Crop Yield Increases and a Universal Carbon Tax from a Scenario Model

T. Davies-Barnard University of Bristol, Bristol, United Kingdom

Search for other papers by T. Davies-Barnard in
Current site
Google Scholar
PubMed
Close
,
P. J. Valdes University of Bristol, Bristol, United Kingdom

Search for other papers by P. J. Valdes in
Current site
Google Scholar
PubMed
Close
,
J. S. Singarayer University of Reading, Reading, United Kingdom

Search for other papers by J. S. Singarayer in
Current site
Google Scholar
PubMed
Close
, and
C. D. Jones Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by C. D. Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2–Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant −0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to −2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of −0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00154.s1.

Corresponding author address: T. Davies-Barnard, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom. E-mail: t.davies-barnard@bristol.ac.uk

Abstract

Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2–Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant −0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to −2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of −0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00154.s1.

Corresponding author address: T. Davies-Barnard, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom. E-mail: t.davies-barnard@bristol.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 62.96 KB)
Save
  • Alexander, L. P., and Coauthors, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis. T. S. Stocker. et al., Eds., Cambridge University Press, in press. [Available online at http://www.ipcc.ch/.]

  • Bathiany, S., M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler, 2010: Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences, 7, 13831399, doi:10.5194/bg-7-1383-2010.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187190, doi:10.1038/35041545.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. D. Falloon, K. K. Goldewijk, and N. Ramankutty, 2007: Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agric. For. Meteor., 142, 216233, doi:10.1016/j.agrformet.2006.08.021.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., and Coauthors, 2006: Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Climate Dyn., 26, 587600, doi:10.1007/s00382-005-0092-6.

    • Search Google Scholar
    • Export Citation
  • Bruinsma, J., 2003: World Agriculture: Towards 2015/2030: An FAO Perspective. Earthscan, 432 pp.

  • Chen, Y., Z. Wu, K. Okamoto, X. Han, G. Ma, H. Chien, and J. Zhao, 2013: The impacts of Climate change on crops in China: A Ricardian analysis. Global Planet. Change,104, 61–74, doi:10.1016/j.gloplacha.2013.01.005.

  • Claussen, M., V. Brovkin, and A. Ganopolski, 2001: Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys. Res. Lett., 28, 10111014, doi:10.1029/2000GL012471.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and J. A. Foley, 2000: Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Climate, 13, 1834.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., 2001: Description of the TRIFFID dynamic global vegetation model. Hadley Centre Tech. Note 24, 16 pp.

  • Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: Amazonian forest dieback under climate–carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78, 137156.

    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. Shukla, 1994: Albedo as a modulator of climate response to tropical deforestation. J. Geophys. Res., 99 (D10), 20 863–20 877.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., D. Niyogi, N. de Noblet-Ducoudré, R. E. Dickinson, and P. K. Snyder, 2010: Impacts of land use change on climate. Int. J. Climatol., 30, 19051907, doi:10.1002/joc.2157.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1996: Role of vegetation in sustaining large-scale atmospheric circulations in the tropics. J. Geophys. Res., 101 (D2), 42554268.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., M. J. Best, and P. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note 30, 30 pp.

  • Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530543.

    • Search Google Scholar
    • Export Citation
  • Ewert, F., M. D. A. Rounsevell, I. Reginster, M. J. Metzger, and R. Leemans, 2005: Future scenarios of European agricultural land use: I. Estimating changes in crop productivity. Agric. Ecosyst. Environ., 107, 101116, doi:10.1016/j.agee.2004.12.003.

    • Search Google Scholar
    • Export Citation
  • Fearnside, P. M., 2012: Brazil’s Amazon forest in mitigating global warming: Unresolved controversies. Climate Policy, 12, 7081, doi:10.1080/14693062.2011.581571.

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, 2005a: The importance of land-cover change in simulating future climates. Science, 310, 16741678, doi:10.1126/science.1118160.

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, W. Washington, G. Meehl, and D. Nychka, 2005b: A comparison of a GCM response to historical anthropogenic land cover change and model sensitivity to uncertainty in present-day land cover representations. Climate Dyn., 25, 581609, doi:10.1007/s00382-005-0038-z.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and Coauthors, 2005: Global consequences of land use. Science, 309, 570574, doi:10.1126/science.1111772.

  • Foley, J. A., and Coauthors, 2011: Solutions for a cultivated planet. Nature, 478, 337342, doi:10.1038/nature10452.

  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., and D. J. Parker, 2011: How does local tropical deforestation affect rainfall? Geophys. Res. Lett.,38, L19802, doi:10.1029/2011GL049099.

  • Gedney, N., and P. J. Valdes, 2000: The effect of Amazonian deforestation on the Northern Hemisphere circulation and climate. Geophys. Res. Lett., 27, 30533056, doi:10.1029/2000GL011794.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Climate, 26, 6844–6858.

    • Search Google Scholar
    • Export Citation
  • Gornall, J., R. Betts, E. Burke, R. Clark, J. Camp, K. Willett, and A. Wiltshire, 2010: Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. Roy. Soc., 365B, 29732989, doi:10.1098/rstb.2010.0158.

    • Search Google Scholar
    • Export Citation
  • Gross, M., 2013: Food security in the times of climate change. Curr. Biol., 23, R1R4, doi:10.1016/j.cub.2012.12.018.

  • Hasler, N., D. Werth, and R. Avissar, 2009: Effects of tropical deforestation on global hydroclimate: A multimodel ensemble analysis. J. Climate, 22, 11241141.

    • Search Google Scholar
    • Export Citation
  • Hibbard, K., A. Janetos, D. P. van Vuuren, J. Pongratz, S. K. Rose, R. Betts, M. Herold, and J. J. Feddema, 2010: Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling. Int. J. Climatol., 30, 21182128, doi:10.1002/joc.2150.

    • Search Google Scholar
    • Export Citation
  • Huntingford, C., and Coauthors, 2008: Towards quantifying uncertainty in predictions of Amazon “dieback.” Philos. Trans. Roy. Soc., 363B, 18571864.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, doi:10.1007/s10584-011-0153-2.

    • Search Google Scholar
    • Export Citation
  • Irvine, P. J., A. Ridgwell, and D. J. Lunt, 2011: Climatic effects of surface albedo geoengineering. J. Geophys. Res.,116, D24112, doi:10.1029/2011JD016281.

  • Jaggard, K. W., A. Qi, and E. S. Ober, 2010: Possible changes to arable crop yields by 2050. Philos. Trans. Roy. Soc.,365B, 28352851, doi:10.1098/rstb.2010.0153.

    • Search Google Scholar
    • Export Citation
  • Jones, A. D., and Coauthors, 2013: Greenhouse gas policy influences climate via direct effects of land-use change. J. Climate, 26, 3657–3670.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., C. McConnell, K. Coleman, P. Cox, P. Falloon, D. Jenkinson, and D. Powlson, 2005: Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biol., 11, 154166, doi:10.1111/j.1365-2486.2004.00885.x.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543570, doi:10.5194/gmd-4-543-2011.

    • Search Google Scholar
    • Export Citation
  • Licker, R., M. Johnston, J. A. Foley, C. Barford, C. J. Kucharik, C. Monfreda, and N. Ramankutty, 2010: Mind the gap: How do climate and agricultural management explain the “yield gap” of croplands around the world? Global Ecol. Biogeogr., 19, 769782, doi:10.1111/j.1466-8238.2010.00563.x.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., K. G. Cassman, and C. B. Field, 2009: Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour., 34, 179204, doi:10.1146/annurev.environ.041008.093740.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., W. Schlenker, and J. Costa-Roberts, 2011: Climate trends and global crop production since 1980. Science,333, 616–620, doi:10.1126/science.1204531.

  • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19, 12741301.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., A. J. Weaver, K. J. Meissner, N. P. Gillett, and M. Eby, 2004: Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dyn., 22, 461479, doi:10.1007/s00382-004-0392-2.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Meiyappan, P., and A. K. Jain, 2012: Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front. Earth Sci., 6, 122139, doi:10.1007/s11707-012-0314-2.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Parry, M., C. Rosenzweig, A. Iglesias, G. Fischer, and M. Livermore, 1999: Climate change and world food security: A new assessment. Global Environ. Change, 9 (Suppl. 1), S51S67, doi:10.1016/S0959-3780(99)00018-7.

    • Search Google Scholar
    • Export Citation
  • Pongratz, J., C. H. Reick, T. Raddatz, and M. Claussen, 2010: Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett.,37, L08702, doi:10.1029/2010GL043010.

  • Ray, D. K., N. Ramankutty, N. D. Mueller, P. C. West, and J. A. Foley, 2012: Recent patterns of crop yield growth and stagnation. Nat. Commun., 3, 1293, doi:10.1038/ncomms2296.

    • Search Google Scholar
    • Export Citation
  • Ridgwell, A., J. S. Singarayer, A. M. Hetherington, and P. J. Valdes, 2009: Tackling regional climate change by leaf albedo bio-geoengineering. Curr. Biol., 19, 146150, doi:10.1016/j.cub.2008.12.025.

    • Search Google Scholar
    • Export Citation
  • Runyan, C. W., P. D’Odorico, and D. Lawrence, 2012: Physical and biological feedbacks of deforestation. Rev. Geophys.,50, RG4006, doi:10.1029/2012RG000394.

  • Schmidhuber, J., and F. N. Tubiello, 2007: Global food security under climate change. Proc. Natl. Acad. Sci. USA, 104, 19 70319 708, doi:10.1073/pnas.0701976104.

    • Search Google Scholar
    • Export Citation
  • Searchinger, T., and Coauthors, 2008: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319, 12381240, doi:10.1126/science.1151861.

    • Search Google Scholar
    • Export Citation
  • Sinclair, T. R., L. C. Purcell, and C. H. Sneller, 2004: Crop transformation and the challenge to increase yield potential. Trends Plant Sci., 9, 7075, doi:10.1016/j.tplants.2003.12.008.

    • Search Google Scholar
    • Export Citation
  • Singarayer, J. S., A. Ridgwell, and P. Irvine, 2009: Assessing the benefits of crop albedo bio-geoengineering. Environ. Res. Lett., 4, 045110, doi:10.1088/1748-9326/4/4/045110.

    • Search Google Scholar
    • Export Citation
  • Smith, P., and Coauthors, 2013: How much land based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biol.,19, 2285–2302, doi:10.1111/gcb.12160.

  • Snyder, P. K., C. Delire, and J. A. Foley, 2004: Evaluating the influence of different vegetation biomes on the global climate. Climate Dyn., 23, 279302, doi:10.1007/s00382-004-0430-0.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Thomson, A. M., and Coauthors, 2010: Climate mitigation and the future of tropical landscapes. Proc. Natl. Acad. Sci. USA, 107, 19 63319 638, doi:10.1073/pnas.0910467107.

    • Search Google Scholar
    • Export Citation
  • Thomson, A. M., and Coauthors, 2011: RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109, 7794, doi:10.1007/s10584-011-0151-4.

    • Search Google Scholar
    • Export Citation
  • Tilman, D., C. Balzer, J. Hill, and B. L. Befort, 2011: Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA, 108, 20 26020 264, doi:10.1073/pnas.1116437108.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D., and Coauthors, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Wise, M., and Coauthors, 2009a: Implications of limiting CO2 concentrations for land use and energy. Science, 324, 11831186, doi:10.1126/science.1168475.

    • Search Google Scholar
    • Export Citation
  • Wise, M., and Coauthors, 2009b: The implications of limiting CO2 concentrations for agriculture, land use, land-use change emissions and bioenergy. Pacific Northwest National Laboratory Rep. PNNL-18341, 42 pp. [Available online at http://www.globalchange.umd.edu/publications/621/.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1790 1265 22
PDF Downloads 314 75 7