Regional Climate Modeling over the Maritime Continent. Part II: New Parameterization for Autoconversion of Convective Rainfall

Rebecca L. Gianotti Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Rebecca L. Gianotti in
Current site
Google Scholar
PubMed
Close
and
Elfatih A. B. Eltahir Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Elfatih A. B. Eltahir in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes a new method for parameterizing the conversion of convective cloud liquid water to rainfall (“autoconversion”) that can be used within large-scale climate models, and evaluates the new method using the Regional Climate Model, version 3 (RegCM3), coupled to the land surface scheme Integrated Biosphere Simulator (IBIS). The new method is derived from observed distributions of cloud water content and is constrained by observations of cloud droplet characteristics and climatological rainfall intensity. This new method explicitly accounts for subgrid variability with respect to cloud water density and is independent of model resolution, making it generally applicable for large-scale climate models. This work builds on the development of a new parameterization method for convective cloud fraction, which was described in Part I.

Simulations over the Maritime Continent using the Emanuel convection scheme show significant improvement in model performance, not only with respect to convective rainfall but also in shortwave radiation, net radiation, and turbulent surface fluxes of latent and sensible heat, without any additional modifications made to the simulation of those variables. Model improvements are demonstrated over a 19-yr validation period as well as a shorter 4-yr evaluation. Model performance with the Grell convection scheme is not similarly improved and reasons for this outcome are discussed. This work illustrates the importance of representing observed subgrid-scale variability in diurnally varying convective processes for simulations of the Maritime Continent region.

Corresponding author address: Rebecca L. Gianotti, MIT Room 48-207, 15 Vassar Street, Cambridge, MA 02139. E-mail: rlg@alum.mit.edu

Abstract

This paper describes a new method for parameterizing the conversion of convective cloud liquid water to rainfall (“autoconversion”) that can be used within large-scale climate models, and evaluates the new method using the Regional Climate Model, version 3 (RegCM3), coupled to the land surface scheme Integrated Biosphere Simulator (IBIS). The new method is derived from observed distributions of cloud water content and is constrained by observations of cloud droplet characteristics and climatological rainfall intensity. This new method explicitly accounts for subgrid variability with respect to cloud water density and is independent of model resolution, making it generally applicable for large-scale climate models. This work builds on the development of a new parameterization method for convective cloud fraction, which was described in Part I.

Simulations over the Maritime Continent using the Emanuel convection scheme show significant improvement in model performance, not only with respect to convective rainfall but also in shortwave radiation, net radiation, and turbulent surface fluxes of latent and sensible heat, without any additional modifications made to the simulation of those variables. Model improvements are demonstrated over a 19-yr validation period as well as a shorter 4-yr evaluation. Model performance with the Grell convection scheme is not similarly improved and reasons for this outcome are discussed. This work illustrates the importance of representing observed subgrid-scale variability in diurnally varying convective processes for simulations of the Maritime Continent region.

Corresponding author address: Rebecca L. Gianotti, MIT Room 48-207, 15 Vassar Street, Cambridge, MA 02139. E-mail: rlg@alum.mit.edu
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9, 28022820.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, J. Cetrone, and M. Kharoutdinov, 2007: Cloud-resolving model simulations of KWAJEX: Model sensitivities and comparisons with satellite and radar observations. J. Atmos. Sci., 64, 14881508.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821.

    • Search Google Scholar
    • Export Citation
  • Chow, K. C., J. C. L. Chan, J. S. Pal, and F. Giorgi, 2006: Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophys. Res. Lett., 33, L24709, doi:10.1029/2006GL028026.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951.

    • Search Google Scholar
    • Export Citation
  • Davies, H., and R. Turner, 1977: Updating prediction models by dynamical relaxation: An examination of the technique. Quart. J. Roy. Meteor. Soc., 103, 225245.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M.-S. Yao, W. Kovari, and K. K.-W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9, 270304.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1993: Estimation of the fractional coverage of rainfall in climate models. J. Climate, 6, 639644.

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132335.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 17661782.

    • Search Google Scholar
    • Export Citation
  • Foster, J., M. Bevis, and W. Raymond, 2006: Precipitable water and the lognormal distribution. J. Geophys. Res., 111, D15102, doi:10.1029/2005JD006731.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9, 489529.

    • Search Google Scholar
    • Export Citation
  • Francisco, R. V., J. Argete, F. Giorgi, J. Pal, X. Bi, and W. J. Gutowski, 2006: Regional model simulation of summer rainfall over the Philippines: Effect of choice of driving fields and ocean flux schemes. Theor. Appl. Climatol., 86, 215227.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., J.-L. Brenguier, and I. Sandu, 2008: Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system. Atmos. Chem. Phys. Discuss., 8, 39213959.

    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., 2012: Convective cloud and rainfall processes over the Maritime Continent: Simulation and analysis of the diurnal cycle. Ph.D. dissertation, Massachusetts Institute of Technology, 306 pp.

  • Gianotti, R. L., and E. A. B. Eltahir, 2014: Regional climate modelling over the Maritime Continent. Part I: New parameterization for convective cloud fraction. J. Climate, 27, 14881503.

    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., D. Zhang, and E. A. B. Eltahir, 2012: Assessment of the Regional Climate Model version 3 over the Maritime Continent using different cumulus parameterization and land surface schemes. J. Climate, 25, 638656.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729.

    • Search Google Scholar
    • Export Citation
  • Global Soil Data Task, IGDP-DIS, 2000: Global soil data products CD-ROM. International Geosphere-Biosphere Programme, Data and Information System (IGDP-DIS), Potsdam, Germany. [Available online at http://daac.ornl.gov/SOILS/igbp.html.]

  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: Description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Rep. TN-398+STR, 117 pp.

  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., E. I. F. de Bruijn, and H.-L. Pan, 1990: A high-resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 15611575.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Iassamen, A., H. Sauvageot, N. Jeannin, and S. Ameur, 2009: Distribution of tropospheric water vapor in clear and cloudy conditions from microwave radiometric profiling. J. Appl. Meteor. Climatol., 48, 600615.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J. Atmos. Sci., 66, 29532972.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa–Schubert cumulus parameterization. J. Atmos. Sci., 39, 88103.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and W. R. Cotton, 1977: Formulation of approximate equations for modeling moist deep convection on the mesoscale. Atmospheric Science Paper 266, Colorado State University, Fort Collins, 62 pp.

  • Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166.

  • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19, 12741301.

    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848.

  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp.

  • Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105 (D24), 579594.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., 1999: Estimating historical changes in land cover: North American croplands from 1850 to 1992. Global Ecol. Biogeogr., 8, 381396.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131, 639673.

    • Search Google Scholar
    • Export Citation
  • Reid, J. S., P. V. Hobbs, A. L. Rangno, and D. A. Hegg, 1999: Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke. J. Geophys. Res., 104 (D6), 61456153.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. Rayner, T. Smith, D. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Elsevier, 293 pp.

  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237258.

  • Rossow, W. B., A. W. Walker, D. E. Beuschel, and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. WMO/TD-No. 737, 115 pp.

  • Rotstayn, L. D., 2000: On the “tuning” of autoconversion parameterizations in climate models. J. Geophys. Res., 105 (D12), 15 49515 507.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958: The microstructure and colloidal stability of warm clouds. Part II: The causes of the variations in microstructure. Tellus, 10, 262271.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., S. K. Gupta, S. J. Cox, J. C. Mikovitz, T. Zhang, and L. M. Hinkelman, 2011: 24.5-year SRB data set released. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 10–12.

  • Stephens, G. L., and J. M. Haynes, 2007: Near global observations of the warm rain coalescence process. Geophys. Res. Lett., 34, L20805, doi:10.1029/2007GL030259.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., E. Berge, and J. E. Kristjánsson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteorol., 40, 11181140.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061.

  • Ulbrich, C., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • United States Geological Survey, 1996: Global 30-arc second elevation dataset (GTOPO30). [Available online at http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info.]

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012. [Dataset available online at http://www.ecmwf.int/research/era/do/get/era-40.]

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567585.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7, 449457.

  • Winter, J. M., J. S. Pal, and E. A. B. Eltahir, 2009: Coupling of Integrated Biosphere Simulator to Regional Climate Model version 3. J. Climate, 22, 27432757.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and Coauthors, 2005: Modeling springtime shallow frontal clouds with cloud-resolving and single-column models. J. Geophys. Res., 110, D15S04, doi:10.1029/2004JD005153.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp. [Available online at http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2082 1645 58
PDF Downloads 199 46 3