Wave Climate and Trends for the Gulf of Mexico: A 30-Yr Wave Hindcast

Christian M. Appendini Laboratorio de Ingeniería y Procesos Costeros, IINGEN–UNAM, Sisal, Mexico

Search for other papers by Christian M. Appendini in
Current site
Google Scholar
PubMed
Close
,
Alec Torres-Freyermuth Laboratorio de Ingeniería y Procesos Costeros, IINGEN–UNAM, Sisal, Mexico

Search for other papers by Alec Torres-Freyermuth in
Current site
Google Scholar
PubMed
Close
,
Paulo Salles Laboratorio de Ingeniería y Procesos Costeros, IINGEN–UNAM, Sisal, Mexico

Search for other papers by Paulo Salles in
Current site
Google Scholar
PubMed
Close
,
Jose López-González Laboratorio de Ingeniería y Procesos Costeros, IINGEN–UNAM, Sisal, Mexico

Search for other papers by Jose López-González in
Current site
Google Scholar
PubMed
Close
, and
E. Tonatiuh Mendoza Laboratorio de Ingeniería y Procesos Costeros, IINGEN–UNAM, Sisal, Mexico

Search for other papers by E. Tonatiuh Mendoza in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes wave climate and variability in the Gulf of Mexico based on a 30-yr wave hindcast. The North American Regional Reanalysis wind fields are employed to drive a third-generation spectral wave model with high spatial (0.005°–0.06°) and temporal (3 hourly) resolution from 1979 through 2008. The wave hindcast information is validated using National Data Buoy Center (NDBC) data and altimeter wave information (GlobWave). The model performance is satisfactory (r2 ~ 0.90) in the Gulf of Mexico and to a lesser extent in the Caribbean Sea (r2 ~ 0.87) where only locally generated waves are considered. However, the waves generated by the Caribbean low-level jet (CLLJ) are discussed in this work. Subsequently, the yearly/monthly mean and extreme wave climates are characterized based on the (30 yr) wave hindcast information. The model results show that the mean wave climate is mainly modulated by winter cold fronts (nortes) in the Gulf of Mexico, whereas extreme wave climate is modulated by both hurricane and norte. Extreme wave heights in the Gulf of Mexico have increased at a rate of 0.07–0.08 m yr−1 in September/October because of increased cyclone intensity in the last decade. However, there is no significant trend when considering the annual statistics for extreme events. Furthermore, modeling results also suggest that the CLLJ modulates the mean wave climate in the Caribbean Sea and controls the rate of mean wave height increase (0.03 m yr−1) in the Caribbean. However, these later results need to be corroborated by extending the computational domain in order to include the swell coming from the Atlantic Ocean.

Corresponding author address: Christian M. Appendini, Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, 92718, Sisal, Mexico. E-mail: cappendinia@iingen.unam.mx

Abstract

This paper describes wave climate and variability in the Gulf of Mexico based on a 30-yr wave hindcast. The North American Regional Reanalysis wind fields are employed to drive a third-generation spectral wave model with high spatial (0.005°–0.06°) and temporal (3 hourly) resolution from 1979 through 2008. The wave hindcast information is validated using National Data Buoy Center (NDBC) data and altimeter wave information (GlobWave). The model performance is satisfactory (r2 ~ 0.90) in the Gulf of Mexico and to a lesser extent in the Caribbean Sea (r2 ~ 0.87) where only locally generated waves are considered. However, the waves generated by the Caribbean low-level jet (CLLJ) are discussed in this work. Subsequently, the yearly/monthly mean and extreme wave climates are characterized based on the (30 yr) wave hindcast information. The model results show that the mean wave climate is mainly modulated by winter cold fronts (nortes) in the Gulf of Mexico, whereas extreme wave climate is modulated by both hurricane and norte. Extreme wave heights in the Gulf of Mexico have increased at a rate of 0.07–0.08 m yr−1 in September/October because of increased cyclone intensity in the last decade. However, there is no significant trend when considering the annual statistics for extreme events. Furthermore, modeling results also suggest that the CLLJ modulates the mean wave climate in the Caribbean Sea and controls the rate of mean wave height increase (0.03 m yr−1) in the Caribbean. However, these later results need to be corroborated by extending the computational domain in order to include the swell coming from the Atlantic Ocean.

Corresponding author address: Christian M. Appendini, Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, 92718, Sisal, Mexico. E-mail: cappendinia@iingen.unam.mx
Save
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 19 pp.

  • Appendini, C., and V. Camacho, cited2012: Using GlobWave L2P data for wave hindcast assessments in the Gulf of Mexico. [Available online at http://www.globwave.org/Tools/Case-Studies-Tutorials/Using-GlobWave-L2P-data-for-wave-hindcast-assessments-in-the-Gulf-of-Mexico.]

  • Appendini, C., A. Torres-Freyermuth, F. Oropeza, P. Salles, J. López, and E. T. Mendoza, 2013: Wave modeling performance in the Gulf of Mexico and western Caribbean: Wind reanalyses assessment. Appl. Ocean Res., 39, 2030.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., E. Rogers, A. V. Babanin, J. F. Filipot, R. Magne, A. Roland, and F. Collard, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941.

    • Search Google Scholar
    • Export Citation
  • Bosserelle, C., C. Pattiaratchi, and I. Haigh, 2012: Inter-annual variability and longer-term changes in the wave climate of Western Australia between 1970 and 2009. Ocean Dyn., 62, 6376.

    • Search Google Scholar
    • Export Citation
  • Caires, S., A. Sterl, J. R. Bidlot, N. Graham, and V. Swail, 2004: Intercomparison of different wind–wave reanalyses. J. Climate, 17, 18931913.

    • Search Google Scholar
    • Export Citation
  • Calverley, M. J., D. Szabo, V. J. Cardone, E. A. Orelup, and M. J. Parsons, 2002: Wave climate study of the Caribbean Sea. Proc. Seventh Int. Workshop on Wave Hindcasting and Forecasting, Banff, AB, Canada, Environment Canada. [Available online at http://www.waveworkshop.org/7thWaves/Papers/Calverly_etal.pdf.]

  • Cardone, V. J., H. C. Graber, R. E. Jensen, S. Hasselmann, and M. J. Caruso, 1995: In search of the true surface wind field in SWADE IOP-1: Ocean wave modelling perspective. Global Atmos. Ocean Syst., 3, 107150.

    • Search Google Scholar
    • Export Citation
  • Chao, Y. Y., J.-H. G. M. Alves, and H. L. Tolman, 2005: An operational system for predicting hurricane-generated wind waves in the North Atlantic Ocean. Wea. Forecasting, 20, 652671.

    • Search Google Scholar
    • Export Citation
  • Charles, E., D. Idier, J. Thiébot, G. Le Cozannet, R. Pedreros, F. Ardhuin, and S. Planton, 2011: Present wave climate in the Bay of Biscay: Spatiotemporal variability and trends from 1958 to 2001. J. Climate, 25, 20202039.

    • Search Google Scholar
    • Export Citation
  • Chawla, A., D. M. Spindler, and H. L. Tolman, 2013: Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Modell., 70, 189206.

    • Search Google Scholar
    • Export Citation
  • Cox, A. T., and V. R. Swail, 2001: A global wave hindcast over the period 1958–1997: Validation and climate assessment. J. Geophys. Res., 106C, 23132329.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., V. Grigorieva, A. Sterl, and D. Woolf, 2003: Assessment of the reliability of wave observations from voluntary observing ships: Insights from the validation of a global wind wave climatology based on voluntary observing ship data. J. Geophys. Res., 108, 3236, doi:10.1029/2002JC001437.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., J. A. Church, and J. R. Hunter, 2010: Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol., 30, 475491.

    • Search Google Scholar
    • Export Citation
  • Izaguirre, C., F. J. Méndez, M. Menéndez, and I. J. Losada, 2011: Global extreme wave height variability based on satellite data. Geophys. Res. Lett., 38, L10607, doi:10.1029/2011GL047302.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1996: Dynamics and Modelling of Ocean Waves.Cambridge University Press, 556 pp.

  • Lefèvre, J. M., and P. D. Cotton, 2001: Ocean surface waves. Satellite Altimetry and Earth Sciences, F. Lee-Lueng, and C. Anny, Eds., Academic Press, 305–328.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Moeini, M. H., and A. Etemad-Shahidi, 2007: Application of two numerical models for wave hindcasting in Lake Erie. Appl. Ocean Res., 29, 137145.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, T. Hara, H. L. Tolman, C. W. Wright, and E. J. Walsh, 2003: Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr., 33, 16801706.

    • Search Google Scholar
    • Export Citation
  • Panchang, V., C. K. Jeong, and Z. Demirbilek, 2013: Analyses of extreme wave heights in the Gulf of Mexico for offshore engineering applications. J. Offshore Mech. Arctic Eng., 135, 031104, doi:10.1115/1.4023205.

    • Search Google Scholar
    • Export Citation
  • Pilar, P., C. G. Soares, and J. C. Carretero, 2008: 44-year wave hindcast for the North East Atlantic European coast. Coast. Eng., 55, 861871.

    • Search Google Scholar
    • Export Citation
  • Reistad, M., O. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik, and J.-R. Bidlot, 2011: A high-resolution hindcast of wind and waves for the North Sea, The Norwegian Sea and The Barents Sea. J. Geophys. Res., 116, C05019, doi:10.1029/2010JC006402.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Soares, C. G., R. Weisse, J. C. Carretero, and E. Alvarez, 2002: A 40 years hindcast of wind, sea level and waves in European waters. Proc. 21st Int. Conf. on Offshore Mechanics and Arctic Engineering (OMAE’02), Oslo, Norway, ASME, Vol. 2, 669–675.

  • Sørensen, O. R., H. Kofoed-Hansen, M. Rugbjerg, and L. S. Sørensen, 2004: A third-generation spectral wave model using an unstructured finite volume technique. Proc. 29th Intl. Conf. on Coastal Engineering, Lisbon, Portugal, ASCE, 894906.

  • Sterl, A., G. J. Komen, and P. D. Cotton, 1998: Fifteen years of global wave hindcasts using winds from the European Centre for Medium-Range Weather Forecasts reanalysis: Validating the reanalyzed winds and assessing the wave climate. J. Geophys. Res., 103, 54775492.

    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., K. F. Cheung, H. L. Tolman, and A. Chawla, 2013: Patterns and cycles in the Climate Forecast System reanalysis wind and wave data. Ocean Modell., 70, 207220.

    • Search Google Scholar
    • Export Citation
  • Swail, V. R., and A. T. Cox, 2000: On the use of NCEP–NCAR reanalysis surface marine wind fields for a long-term North Atlantic wave hindcast. J. Atmos. Oceanic Technol., 17, 532545.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2004: ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957–2002. ECMWF Newsletter, No. 101, ECMWF, Reading, United Kingdom, 2–21.

  • Vecchi, G. A., K. L. Swanson, and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687689.

  • Vinoth, J., and I. R. Young, 2011: Global estimates of extreme wind speed and wave height. J. Climate, 24, 16471665.

  • Wang, C., 2007: Variability of the Caribbean low-level jet and its relations to climate. Climate Dyn., 29, 411422.

  • Wang, D.-P., and L.-Y. Oey, 2008: Hindcast of waves and currents in Hurricane Katrina. Bull. Amer. Meteor. Soc., 89, 487495.

  • Weisse, R., and H. Günther, 2007: Wave climate and long-term changes for the southern North Sea obtained from a high-resolution hindcast 1958–2002. Ocean Dyn., 57, 161172.

    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., P. G. Challenor, and P. D. Cotton, 2002: Variability and predictability of the North Atlantic wave climate. J. Geophys. Res., 107, 3145, doi:10.1029/2001JC001124.

    • Search Google Scholar
    • Export Citation
  • Woolf, D. K., P. David Cotton, and P. G. Challenor, 2003: Measurements of the offshore wave climate around the British Isles by satellite altimeter . Philos. Trans. Roy. Soc.,361A, 2731.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol., 19, 931950.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3677 1471 79
PDF Downloads 2237 449 39