How Much of Monthly Subsurface Temperature Variability in the Equatorial Pacific Can Be Recovered by the Specification of Sea Surface Temperatures?

Arun Kumar NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
,
Hui Wang NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland, and Wyle Science, Technology and Engineering Group, Houston, Texas

Search for other papers by Hui Wang in
Current site
Google Scholar
PubMed
Close
,
Yan Xue NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Yan Xue in
Current site
Google Scholar
PubMed
Close
, and
Wanqiu Wang NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The focus of the analysis is to investigate the question to what extent the specification of sea surface temperature (SST) in coupled model integration can impart realistic evolution of subsurface ocean temperature in the equatorial tropical Pacific. In the context of El Niño–Southern Oscillation (ENSO) prediction, the analysis is of importance from two aspects: such a system can be considered as a simple coupled ocean data assimilation system that can provide ocean initial conditions; and what additional components of the ocean observing system may be crucial for skillful ENSO prediction.

The results indicate that coupled model integration where SST is continuously nudged toward the observed state can generate a realistic evolution of subsurface ocean temperature. The evolution of slow variability related to ENSO, in particular, has a good resemblance against the observational counterpart. The realism of subsurface ocean temperature variability is highest near the date line and least in the far eastern Pacific where the thermocline is shallowest. The results are also discussed in the context of ocean observing system requirements for ENSO prediction.

Corresponding author address: Dr. Arun Kumar, NOAA/Climate Prediction Center, 5830 University Research Court, NCWCP, College Park, MD 20740. E-mail: arun.kumar@noaa.gov

Abstract

The focus of the analysis is to investigate the question to what extent the specification of sea surface temperature (SST) in coupled model integration can impart realistic evolution of subsurface ocean temperature in the equatorial tropical Pacific. In the context of El Niño–Southern Oscillation (ENSO) prediction, the analysis is of importance from two aspects: such a system can be considered as a simple coupled ocean data assimilation system that can provide ocean initial conditions; and what additional components of the ocean observing system may be crucial for skillful ENSO prediction.

The results indicate that coupled model integration where SST is continuously nudged toward the observed state can generate a realistic evolution of subsurface ocean temperature. The evolution of slow variability related to ENSO, in particular, has a good resemblance against the observational counterpart. The realism of subsurface ocean temperature variability is highest near the date line and least in the far eastern Pacific where the thermocline is shallowest. The results are also discussed in the context of ocean observing system requirements for ENSO prediction.

Corresponding author address: Dr. Arun Kumar, NOAA/Climate Prediction Center, 5830 University Research Court, NCWCP, College Park, MD 20740. E-mail: arun.kumar@noaa.gov
Save
  • Balmaseda, M. A., D. L. T. Anderson, and M. K. Davey, 1994: ENSO prediction using dynamical ocean model coupled to statistical atmosphere. Tellus, 46A, 497511.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc.,139, 1132–1161, doi:10.1002/qj.2063.

  • Barnett, T. P., M. Latif, N. Graham, M. Flugel, S. Pazan, and W. White, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere mode. J. Climate, 6, 15451566.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at http://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm.]

  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Wang, A. Kumar, H. Wang, and B. Jha, 2012: Ocean surface impacts on the seasonal-mean precipitation over the tropical Indian Ocean. J. Climate, 25, 35663582.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 1997: Origins of extreme climate states during the 1982–83 ENSO winter. J. Climate, 10, 28592870.

  • Horel, J. D., and J. M. Wallace, 1981: Planetary scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, H. Ren, H. Wang, M. L’Heureux, and F.-F. Jin, 2013: Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 26012613.

    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean – atmosphere models. Climate Dyn., 31, 647664.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 10191037.

  • Keenlyside, N. S., M. Latif, M. Botzet, J. Jungclaus, and U. Schulzweida, 2005: A coupled method for initializing El Niño–Southern Oscillation forecasts using sea surface temperature, Tellus,57A, 340356.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1995: Prospects and limitations of atmospheric GCM climate predictions. Bull. Amer. Meteor. Soc., 76, 335345.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2012: Uncertainty in ocean-atmosphere feedbacks associated with ENSO in the reanalysis products. Climate Dyn., 39, 575588.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., doi:10.1007/s00382-013-1721-0, in press.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predictions, probabilistic verifications, and ensemble size. J. Climate, 14, 16711676.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and A. Villwock, 1990: Interannual variability as simulated in coupled ocean-atmosphere models. J. Mar. Syst., 1, 5160.

  • Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 44744497.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 701–18 706, doi:10.1073/pnas.1210239109.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954.

  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, doi:10.1029/2012GL051826.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., in press.

  • Moorthi, S., H.-L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bull. 484, 14 pp. [Available online at http://www.nws.noaa.gov/om/tpb/484.htm.]

  • Oberhuber, J. M., E. Roeckner, M. Christoph, M. Esch, and M. Latif, 1998: Predicting the ’97 El Niño event with a global climate model. Geophys. Res. Lett., 25, 22732276.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, 668 pp.

  • Pan, H.-L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary layer developments. Bound.-Layer Meteor., 38, 185202.

    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, A. G. Barnston, and L. Goddard, 2000: Simulation skills of the SST-forced global climate variability of the NCEP-MRF9 and the Scripps–MPI ECHAM3 models. J. Climate, 13, 36573679.

    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, M. S. Halpert, and A. G. Barnston, 2012: An analysis of CPC’s operational 0.5-month lead seasonal outlooks. Wea. Forecasting, 27, 898917.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, in press.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., and R. Kleeman, 2004: SST assimilation experiments in a tropical Pacific Ocean model. J. Phys. Oceanogr., 34, 623642.

  • Trenberth, K. E., G. W. Branstator, D. J. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Process during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 (C7), 14 29114 324.

    • Search Google Scholar
    • Export Citation
  • Wang, H., A. Kumar, and W. Wang, 2013: Characteristics of subsurface ocean response to ENSO assessed from simulations with the NCEP Climate Forecast System. J. Climate, 26, 8065–8083.

    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, A. Kumar, and Y. Xue, 2011: How important is intraseasonal surface wind variability to real-time ENSO prediction? Geophys. Res. Lett., 38, L13705, doi:10.1029/2011GL047684.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn.,41, 327–340, doi:10.1007/s00382-012-1427-8.

  • Xue, Y., and Coauthors, 2012: A comparative analysis of upper-ocean heat content variability from an ensemble of operational ocean reanalyses. J. Climate, 25, 69056929.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. Chen, A. Kumar, Z.-Z. Hu, and W. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Climate, 26, 5358–5378.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, L. Marx, J. L. Kinter III, M. A. Balmaseda, R.-H. Zhang, and Z.-Z. Hu, 2012: Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett., 39, L09602, doi:10.1029/2012GL051503.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 633 330 28
PDF Downloads 171 48 6