Dynamical Seasonal Climate Prediction Using an Ocean–Atmosphere Coupled Climate Model Developed in Partnership between South Africa and the IRI

Asmerom F. Beraki South African Weather Service, and Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa

Search for other papers by Asmerom F. Beraki in
Current site
Google Scholar
PubMed
Close
,
David G. DeWitt International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by David G. DeWitt in
Current site
Google Scholar
PubMed
Close
,
Willem A. Landman Council for Scientific and Industrial Research, Natural Resources and the Environment, and Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa

Search for other papers by Willem A. Landman in
Current site
Google Scholar
PubMed
Close
, and
Cobus Olivier South African Weather Service, and Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa

Search for other papers by Cobus Olivier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The recent increase in availability of high-performance computing (HPC) resources in South Africa allowed the development of an ocean–atmosphere coupled general circulation model (OAGCM). The ECHAM4.5-South African Weather Service (SAWS) Modular Oceanic Model version 3 (MOM3-SA) is the first OAGCM to be developed in Africa for seasonal climate prediction. This model employs an initialization strategy that is different from previous versions of the model that coupled the same atmosphere and ocean models. Evaluation of hindcasts performed with the model revealed that the OAGCM is successful in capturing the development and maturity of El Niño and La Niña episodes up to 8 months ahead. A model intercomparison also indicated that the ECHAM4.5-MOM3-SA has skill levels for the Niño-3.4 region SST comparable with other coupled models administered by international centers. Further analysis of the coupled model revealed that La Niña events are more skillfully discriminated than El Niño events. However, as is typical for OAGCM, the model skill was generally found to decay faster during the spring barrier.

The analysis also showed that the coupled model has useful skill up to several-months lead time when predicting the equatorial Indian Ocean dipole (IOD) during the period spanning between the middle of austral spring and the start of the summer seasons, which reaches its peak in November. The weakness of the model in other seasons was mainly caused by the western segment of the dipole, which eventually contaminates the dipole mode index (DMI). The model is also able to forecast the anomalous upper air circulations, particularly in the equatorial belt, and surface air temperature in the Southern African region as opposed to precipitation.

Current affiliation: NOAA/NWS, Silver Spring, Maryland.

Corresponding author address: Asmerom F. Beraki, South African Weather Service, Private Bag X097, Pretoria, 0001, South Africa. E-mail: asmerom.beraki@weathersa.co.za

Abstract

The recent increase in availability of high-performance computing (HPC) resources in South Africa allowed the development of an ocean–atmosphere coupled general circulation model (OAGCM). The ECHAM4.5-South African Weather Service (SAWS) Modular Oceanic Model version 3 (MOM3-SA) is the first OAGCM to be developed in Africa for seasonal climate prediction. This model employs an initialization strategy that is different from previous versions of the model that coupled the same atmosphere and ocean models. Evaluation of hindcasts performed with the model revealed that the OAGCM is successful in capturing the development and maturity of El Niño and La Niña episodes up to 8 months ahead. A model intercomparison also indicated that the ECHAM4.5-MOM3-SA has skill levels for the Niño-3.4 region SST comparable with other coupled models administered by international centers. Further analysis of the coupled model revealed that La Niña events are more skillfully discriminated than El Niño events. However, as is typical for OAGCM, the model skill was generally found to decay faster during the spring barrier.

The analysis also showed that the coupled model has useful skill up to several-months lead time when predicting the equatorial Indian Ocean dipole (IOD) during the period spanning between the middle of austral spring and the start of the summer seasons, which reaches its peak in November. The weakness of the model in other seasons was mainly caused by the western segment of the dipole, which eventually contaminates the dipole mode index (DMI). The model is also able to forecast the anomalous upper air circulations, particularly in the equatorial belt, and surface air temperature in the Southern African region as opposed to precipitation.

Current affiliation: NOAA/NWS, Silver Spring, Maryland.

Corresponding author address: Asmerom F. Beraki, South African Weather Service, Private Bag X097, Pretoria, 0001, South Africa. E-mail: asmerom.beraki@weathersa.co.za
Save
  • Alves, J. O. S., M. A. Balmaseda, D. L. T. Anderson, and T. N. Stockdale, 2004: Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Quart. J. Roy. Meteor. Soc., 130, 647668.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701, doi:10.1029/2008GL035561.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and T. M. Smith, 1996: Specification and prediction of global surface temperature and precipitation from global SST using CCA. J. Climate, 9, 26602697.

    • Search Google Scholar
    • Export Citation
  • Beraki, A. F., W. A. Landman, D. G. DeWitt, C. Olivier, K. Mathole, and T. Ndarana, 2013: Modelled sea-surface temperature scenario considerations and Southern African seasonal rainfall and temperature predictability. Water Research Commission Rep. 1913/1/12, 127 pp.

  • Brinkop, S., and E. Roeckner, 1995: Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer. Tellus, 47A, 197220.

    • Search Google Scholar
    • Export Citation
  • Collins, D. C., C. J. Reason, and F. Tangang, 2004: Predictability of Indian Ocean sea surface temperature using canonical correlation analysis. Climate Dyn., 22, 481497.

    • Search Google Scholar
    • Export Citation
  • Colman, A., and M. Davey, 1999: Prediction of summer temperature, rainfall and pressure in Europe from preceding winter North Atlantic Ocean temperature. Int. J. Climatol., 19, 513536.

    • Search Google Scholar
    • Export Citation
  • Conil, S., H. Douville, and S. Tyteca, 2009: Contribution of realistic soil moisture initial conditions to boreal summer climate predictability. Climate Dyn., 32, 7593.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2001: Seasonal predictability of tropical rainfall: Probabilistic formulation and validation. Tellus, 53A, 500512.

  • Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 13331347.

  • DeWitt, D. G., 2005: Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon. Wea. Rev., 133, 29722995.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., J. Garcia-Serrano, F. Lienert, A. P. Biescas, and L. R. L. Rodrigues, 2013: Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev.: Climate Change, 4, 245268, doi:10.1002/wcc.217.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2010: Relative contribution of soil moisture and snow mass to seasonal climate predictability: A pilot study. Climate Dyn., 34, 797818.

    • Search Google Scholar
    • Export Citation
  • Dümenil, L., and E. Todini, 1992: A rainfall-runoff scheme for use in the Hamburg climate model. Advances in Theoretical Hydrology, J. P. O’Kane, Ed., Elsevier, 129–157.

  • Fan, Y., and H. Van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res., 109, D10102, doi:10.1029/2003JD004345.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parameterization. Beitr. Phys. Atmos., 53, 3562.

    • Search Google Scholar
    • Export Citation
  • Gaertner, M. A., and M. Castro, 1996: A new method for vertical interpolation of the mass field. Mon. Wea. Rev., 124, 15961603.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane, 2001: Current approaches to seasonal-to-interannual climate predictions. Int. J. Climatol., 21, 11111152.

    • Search Google Scholar
    • Export Citation
  • Graham, R. J., M. Gordon, P. J. McLean, S. Ineson, M. R. Huddleston, M. K. Davey, A. Brookshaw, and R. T. H. Barnes, 2005: A performance comparison of coupled and uncoupled versions of the Met Office seasonal prediction general circulation model. Tellus, 57A, 320319.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., J. J. Morcrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 126, 16851710.

    • Search Google Scholar
    • Export Citation
  • Guérémy, J. F., M. Déqué, A. Braun, and J. P. Piedelièvre, 2005: Actual and potential skill of seasonal predictions using the CNRM contribution to DEMETER: Coupled versus uncoupled model. Tellus, 57A, 308319.

    • Search Google Scholar
    • Export Citation
  • Hartmann, H. C., T. C. Pagano, S. Sorooshian, and R. Bales, 2002: Confidence builders: Evaluating seasonal climate forecasts for user perspectives. Bull. Amer. Meteor. Soc., 83, 683698.

    • Search Google Scholar
    • Export Citation
  • Harvey, L. O., K. R. Hammond, C. M. Lusk, and E. F. Mross, 1992: The application of signal detection theory to weather forecasting behavior. Mon. Wea. Rev., 120, 863883.

    • Search Google Scholar
    • Export Citation
  • Ji, M., D. W. Behringer, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: The coupled model. Mon. Wea. Rev., 126, 10221034.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 10191037.

  • Kirtman, B. P., 2003: The COLA anomaly coupled model: Ensemble ENSO prediction. Mon. Wea. Rev., 131, 23242341.

  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal predictions with a coupled tropical ocean-global atmosphere system. Mon. Wea. Rev., 125, 789808.

    • Search Google Scholar
    • Export Citation
  • Komori, N., A. Kuwano-Yoshida, T. Enomoto, H. Sasaki, and W. Ohfuchi, 2008: High-resolution simulation of the global coupled atmosphere-ocean system: Description and preliminary outcomes of CFES (CGCM for the Earth Simulator). High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 241–260.

  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., and S. J. Mason, 2001: Forecasts of near-global sea surface temperatures using canonical correlation analysis. J. Climate, 14, 38193833.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., and A. Beraki, 2012: Multi-model forecast skill for mid-summer rainfall over Southern Africa. Int. J. Climatol., 32, 303314.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., F. Engelbrecht, A. Beraki, C. Engelbrecht, M. Mbedzi, T. Gill, and L. Ntsangwane, 2009: Model output statistics applied to multi-model ensemble long-range forecasts over South Africa. Water Research Commission Rep. 1492/1/08, 56 pp.

  • Landman, W. A., D. DeWitt, D.-E. Lee, A. Beraki, and D. Lötter, 2012: Seasonal rainfall prediction skill over South Africa: One- versus two-tiered forecasting systems. Wea. Forecasting, 27, 489501.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Laursen, L., and E. Eliasen, 1989: On the effects of the damping mechanisms in an atmospheric general circulation model. Tellus, 41A, 385400.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Majewski, D., 1985: Balanced initial and boundary values for a limited area model. Beitr.Phys. Atmos., 58, 147159.

  • Mason, I., 1979: On reducing probability forecasts to yes/no forecasts. Mon. Wea. Rev., 107, 207211.

  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Mason, S. J., and N. E. Graham, 2002: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128, 21452166.

    • Search Google Scholar
    • Export Citation
  • Mathole, K., T. Ndarana, A. F. Beraki, and W. A. Landman, 2014: Assessing the importance of lower stratospheric processes on the predictability of summer rainfall over South Africa. S. Afr. J. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 1996: Semi-Lagrangian advection on conformal-cubic grids. Mon. Wea. Rev., 124, 13111322.

  • Miller, M. J., T. N. Palmer, and R. Swinbank, 1989: Parameterization and influence of sub-grid scale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys., 40, 84109.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and M. Ghil, 1987: Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44, 877901.

  • Morcrette, J.-J., L. Smith, and Y. Fouquart, 1986: Pressure and temperature dependence of the absorption in longwave radiation parameterizations. Beitr. Phys. Atmos., 59, 455469.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. D. Jones, 2000: Representing twentieth century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Department Tech. Memo. 206, 41 pp.

  • Pacanowski, R. C., and S. M. Griffes, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory Rep., 608 pp.

  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., M. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrizations in the Hadley Centre climate model—HadAM3. Climate Dyn., 16, 123146.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 1999: Interannual warm and cool events in the subtropical/mid-latitude south Indian Ocean region. Geophys. Res. Lett., 26, 215218.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2002: Sensitivity of the Southern African circulation to dipole SST patterns in the south Indian Ocean. Int. J. Climatol., 22, 377393.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and H. M. Mulenga, 1999: Relationships between South African rainfall and SST anomalies in the south west Indian Ocean. Int. J. Climatol., 19, 16511673.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., W. Landman, and W. Tennant, 2006: Seasonal to decadal prediction of southern African climate and its links with variability of the Atlantic Ocean. Bull. Amer. Meteor. Soc., 87, 941955.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11551158.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, and D. C. Stokes, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: Simulation of the present-day climate with the ECHAM4 model: Impact of model physics and resolution. Max Planck Institute for Meteorology Rep. 93, 171 pp.

  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., D. G. DeWitt, A. Rosati, B. P. Kirtman, L. Ji, and J. J. Tribbia, 2003: Retrospective ENSO forecasts: Sensitivity to atmospheric model and ocean resolution. Mon. Wea. Rev., 131, 30383060.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A Simple Biosphere Model (SiB) for use within general circulation model. J. Atmos. Sci., 43, 505531.

    • Search Google Scholar
    • Export Citation
  • Shen, R., E. R. Reiter, and J. F. Bresch, 1986: A simplified hydrodynamic mesoscale model suitable for use over high plateau regions. Meteor. Atmos. Phys., 34, 251296.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., D. M. Burridge, M. Jarraud, C. Girard, and W. Wergen, 1989: The ECMWF medium-range prediction models: Development of the numerical formulations and the impact of increased resolution. Meteor. Atmos. Phys., 40, 2860.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. Balmaseda, 1998: Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. Nature, 392, 370373.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and Coauthors, 2009: Understanding and predicting seasonal to interannual climate variability—the producer perspective. World Climate Conference 3 White Paper, 45 pp.

  • Swets, J. A., 1973: The relative operating characteristic in psychology. Science, 182, 9901000.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 (D7), 71837192.

  • Terray, L., A. Piacentini, and S. Valcke, 1999: OASIS 2.3, Ocean Atmosphere Sea Ice Soil: User’s guide. CERFACS Tech. Rep. TR/CMGC/99/37, 82 pp.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in largescale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Undén, P., and Coauthors, 2002: HIRLAM-5 scientific documentation. Sveriges Meteorologiska och Hydrologiska Institut (SMHI) Rep., 144 pp.

  • Van den Dool, H., and Z. Toth, 1991: Why do forecasts for “near normal” often fail? Wea. Forecasting, 6, 7685.

  • Walker, J., and P. R. Rowntree, 1977: The effect of soil moisture on circulation and rainfall in a tropical model. Quart. J. Roy. Meteor. Soc., 103, 2946.

    • Search Google Scholar
    • Export Citation
  • Wang, G., R. Kleeman, N. Smith, and F. Tseitkin, 2002: The BMRC coupled general circulation model ENSO forecast system. Mon. Wea. Rev., 130, 975991.

    • Search Google Scholar
    • Export Citation
  • Washington, R., and A. Preston, 2006: Extreme wet years over Southern Africa: Role of the Indian Ocean sea surface temperatures. J. Geophys. Res., 111, D15104, doi:10.1029/2005JD006724.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Williamson, D. L., and P. J. Rasch, 1994: Water vapor transport in the NCAR CCM2. Tellus, 46A, 3451.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and C. Li, 2008: Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res., 113, C06S91, doi:10.1029/2006JC004067.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and H.H. Hendon, 2009: Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Quart. J. Roy. Meteor. Soc., 135, 337352.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1284 691 60
PDF Downloads 298 62 12