Regional Assessment of Sampling Techniques for More Efficient Dynamical Climate Downscaling

James O. Pinto National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by James O. Pinto in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Monaghan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Monaghan in
Current site
Google Scholar
PubMed
Close
,
Luca Delle Monache National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Luca Delle Monache in
Current site
Google Scholar
PubMed
Close
,
Emilie Vanvyve National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Emilie Vanvyve in
Current site
Google Scholar
PubMed
Close
, and
Daran L. Rife DNV GL Energy, San Diego, California

Search for other papers by Daran L. Rife in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dynamical downscaling is a computationally expensive method whereby finescale details of the atmosphere may be portrayed by running a limited area numerical weather prediction model (often called a regional climate model) nested within a coarse-resolution global reanalysis or global climate model output. The goal of this study is to assess using sampling techniques to dynamically downscale a small subset of days to approximate the statistical properties of the entire period of interest. Two sampling techniques are explored: one where days are randomly selected and another where representative days are chosen (or targeted) based on a set of selection criteria. The relative merit of using random sampling versus targeted random sampling is demonstrated using daily mean 2-m air temperature (T2M). The first two moments of dynamically downscaled T2M can be approximated within 0.3 K using just 5% of the population of available days during a 20-yr period. Targeted random sampling can reduce the mean absolute error of these estimates by as much as 30% locally. Estimation of the more extreme values of T2M is more uncertain and requires a larger sample size. The potential reduction in computational cost afforded by these sampling techniques could greatly benefit applications requiring high-resolution dynamically downscaled depictions of regional climate, including situations in which an ensemble of regional climate simulations is required to properly characterize uncertainty in the model physics assumptions, scenarios, and so on.

Corresponding author address: James O. Pinto, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: pinto@ucar.edu

Abstract

Dynamical downscaling is a computationally expensive method whereby finescale details of the atmosphere may be portrayed by running a limited area numerical weather prediction model (often called a regional climate model) nested within a coarse-resolution global reanalysis or global climate model output. The goal of this study is to assess using sampling techniques to dynamically downscale a small subset of days to approximate the statistical properties of the entire period of interest. Two sampling techniques are explored: one where days are randomly selected and another where representative days are chosen (or targeted) based on a set of selection criteria. The relative merit of using random sampling versus targeted random sampling is demonstrated using daily mean 2-m air temperature (T2M). The first two moments of dynamically downscaled T2M can be approximated within 0.3 K using just 5% of the population of available days during a 20-yr period. Targeted random sampling can reduce the mean absolute error of these estimates by as much as 30% locally. Estimation of the more extreme values of T2M is more uncertain and requires a larger sample size. The potential reduction in computational cost afforded by these sampling techniques could greatly benefit applications requiring high-resolution dynamically downscaled depictions of regional climate, including situations in which an ensemble of regional climate simulations is required to properly characterize uncertainty in the model physics assumptions, scenarios, and so on.

Corresponding author address: James O. Pinto, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: pinto@ucar.edu
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 2197–2213.

  • Augustine, J. A., and K. W. Howard, 1991: Mesoscale convective complexes over the United States during 1986 and 1987. Mon. Wea. Rev., 119, 1575–1589.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2004: Empirical-statistical downscaling in climate modeling. Eos, Trans. Amer. Geophys. Union, 85, 417–422.

  • Bowden, J. H., T. L. Otte, C. G. Nolte, and M. J. Otte, 2012: Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J. Climate, 25, 2805–2823.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and E. E. Boland, 1978: Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteor., 17, 998–1013.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–586.

    • Search Google Scholar
    • Export Citation
  • Cochran, W. G., 1977: Sampling Techniques. 3rd ed. Wiley, 428 pp.

  • David, C. H., D. J. Gochis, D. R. Maidment, W. Yu, D. N. Yates, and Z.-L. Yang, 2009: Using NHDPlus as the land base for the Noah-distributed model. Trans. GIS, 13, 363–377.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to post-process numerical weather predictions. Mon. Wea. Rev., 139, 3554–3570.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Eckel, D. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather predictions with an analog ensemble. Mon. Wea. Rev., 141, 3498–3516.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., S. Somot, E. Sanchez-Gomez, C. M. Goodess, D. Jacob, G. Lenderink, and O. B. Christensen, 2012: The spread amongst ENSEMBLES regional scenarios: Regional climate models, driving general circulation models and interannual variability. Climate Dyn., 38, 951–964.

    • Search Google Scholar
    • Export Citation
  • Diniz Filho, J. A. F., L. M. Bini, T. F. Rangel, R. D. Loyola, C. Hof, D. Nogues-Bravo, and M. B. Araujo, 2009: Partitioning and mapping uncertainties in ensemble forecasts of species turnover under climate change. Ecography, 32, 897–906.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.

    • Search Google Scholar
    • Export Citation
  • Foley, A. M., 2010: Uncertainty in regional climate modeling: A review. Prog. Phys. Geogr., 34, 647–670, doi:10.1177/0309133310375654.

    • Search Google Scholar
    • Export Citation
  • Fuentes, U., and D. Hiemann, 2000: An improved statistical-dynamical downscaling scheme and its application to alpine precipitation climatology. Theor. Appl. Climatol.,65, 119–135.

  • Gao, Y., L. R. Leung, E. P. Salathé Jr., F. Dominguez, B. Nijssen, and D. P. Lettenmaier, 2012: Moisture flux convergence in regional and global climate models: Implications for droughts in the southwestern United States under climate change. Geophys. Res. Lett., 39, L09711, doi:10.1029/2012GL051560.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 4973–4991.

  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175–183.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett.,29, 1693, doi:10.1029/2002GL015311.

  • Gutmann, E., R. M. Rasmussen, C. Liu, K. Ikeda, D. J. Gochis, M. Clark, J. Dudhia, and G. Thompson, 2012: A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Climate, 25, 262–281.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103–120.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., R. G. Jones, E. Kjellstrom, and J. M. Murphy, 2010: Using and designing GCM–RCM ensemble regional climate projections. J. Climate, 23,6485–6503.

    • Search Google Scholar
    • Export Citation
  • Landberg, L., L. Myllerup, O. Rathmann, E. L. Peterson, B. H. Jorgensen, J. Badger, and N. G. Mortensen, 2003: Wind resource estimation—An overview. Wind Energy, 6, 261–271.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84, 89–95.

    • Search Google Scholar
    • Export Citation
  • Li, G., X. Zhang, F. Zwiers, and Q. H. Wen, 2012: Quantification of uncertainty in high-resolution temperature scenarios for North America. J. Climate, 25, 3373–3389.

    • Search Google Scholar
    • Export Citation
  • MacMillan, K., and Coauthors, 2012: Climate predictors of the spatial distribution of human plague cases in the West Nile region of Uganda. Amer. J. Trop. Med. Hyg., 86, 514–523.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys.,48, RG3003, doi:10.1029/2009RG000314.

  • McSweeney, C. F., R. G. Jones, and B. B. B. Booth, 2012: Selecting ensemble members to provide regional climate change information. J. Climate, 25, 7100–7121.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase 1 results. Bull. Amer. Meteor. Soc., 93, 1337–1362.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 663–16 682.

    • Search Google Scholar
    • Export Citation
  • Moylan, B., B. Landrum, and G. Russell, 2013: Investigation of physical phenomena associated with rain impacts on supersonic and hypersonic flight vehicles. U.S. Army Research Paper 209, 10 pp.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., A. Monaghan, O. Wilhelmi, M. Barlage, N. Brunsell, J. Feddema, L. Hu, and D. F. Steinhoff, 2013: Interactions between urbanization, heat stress, and climate change. Climatic Change, doi:10.1007/s10584-013-0936-8.

    • Search Google Scholar
    • Export Citation
  • Piani, C., G. P. Weedon, M. Best, S. M. Gomes, P. Viterbo, S. Hagemann, and J. O. Haerter, 2010: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol., 395, 199–215, doi:10.1016/j.jhydrol.2010.10.024.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and R. L. Wilby, 2012: Regional climate downscaling—What’s the point? EOS Forum,93, 52–53, doi:10.1029/2012EO050008.

  • Pryor, S. C., R. J. Barthelmie, and E. Kjellström, 2005a: Potential climate change impact on wind energy resources in northern Europe: Analyses using a regional climate model. Climate Dyn., 25, 815–835.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., J. T. Schoof, and R. J. Barthelmie, 2005b: Empirical downscaling of wind speed probability distributions. J. Geophys. Res., 110, D19109, doi:10.1029/2005JD005899.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., R. J. Barthelmie, and J. T. Schoof, 2013: High-resolution projections of climate-related risks for Midwestern USA. Climate Res., 56, 61–79.

    • Search Google Scholar
    • Export Citation
  • Qian, J. H., A. Seth, and S. Zebiak, 2003: Reinitialized versus continuous simulations for regional climate downscaling. Mon. Wea. Rev., 131, 2857–2874.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 3015–3048.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 5041–5064.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., E. Vanvyve, J. O. Pinto, A. J. Monaghan, C. A. Davis, and G. S. Poulos, 2013: Selecting representative days for more efficient dynamical climate downscaling: Application to wind energy. J. Appl. Meteor. Climatol., 52, 47–63.

    • Search Google Scholar
    • Export Citation
  • Rojas, R., L. Feyen, A. Bianchi, and A. Dosio, 2012: Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. J. Geophys. Res., 117, D17109, doi:10.1029/2012JD017461.

    • Search Google Scholar
    • Export Citation
  • Salathé, E., L. Leung, Y. Qian, and Y. Zhang, 2010: Regional climate model projections for the state of Washington. Climatic Change, 102, 51–75, doi:10.1007/s10584-010-9849-y.

    • Search Google Scholar
    • Export Citation
  • Schoof, J. T., S. C. Pryor, and J. Surprenant, 2010: Development of daily precipitation projections for the United States based on probabilistic downscaling. J. Geophys. Res., 115, D13106, doi:10.1029/2009JD013030.

    • Search Google Scholar
    • Export Citation
  • Seefeldt, M. W., and J. J. Cassano, 2012: A description of the Ross Ice Shelf air stream (RAS) through the use of self-organizing maps (SOMs). J. Geophys. Res., 117, D09112, doi:10.1029/2011JD016857.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split non-hydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465–3485.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. M. B. Tignor, and H. L. Miller Jr., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Van der Linden, P., and J. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES Project. Hadley Center Met Office, 160 pp.

  • Wilby, R. L., T. M. L. Wigley, D. Conway, P. D. Jones, B. C. Hewitson, J. Main, and D. S. Wilks, 1998: Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res., 34, 2995–3008.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189–216.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2021 737 39
PDF Downloads 843 74 11