Century-Scale Intensity Modulation of Large-Scale Variability in Long Historical Temperature Records

Naiming Yuan Laboratory for Climate and Ocean–Atmospheric Studies, Department of Atmospheric and Oceanic Science, School of Physics, Peking University, and Chinese Academy of Meteorological Science, Beijing, China

Search for other papers by Naiming Yuan in
Current site
Google Scholar
PubMed
Close
and
Zuntao Fu Laboratory for Climate and Ocean–Atmospheric Studies, Department of Atmospheric and Oceanic Science, School of Physics, Peking University, Beijing, China

Search for other papers by Zuntao Fu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-scale variability in long historical temperature records around the North Atlantic Ocean is analyzed by means of power spectral density (PSD) analysis and detrended fluctuation analysis (DFA). It is found that the intensity of large-scale variability is changeable with time, and long memory analysis can be used to detect this possible intensity variation quantitatively. By estimating long-term memory (LTM) in subrecords of different time intervals, a century-scale variation of LTM is revealed, which further indicates a century-scale intensity modulation of the large-scale temperature variability. At the beginning of the nineteenth and twentieth centuries, the large-scale variability is more apparent, whereas in the second half of the nineteenth and twentieth centuries the large-scale variability becomes less significant. Considering the importance of large-scale variability, the findings herein suggest a new perspective on the understanding of climatic change.

Corresponding author address: Zuntao Fu, Laboratory for Climate and Ocean–Atmosphere Studies, Dept. of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China. E-mail: fuzt@pku.edu.cn

Abstract

Large-scale variability in long historical temperature records around the North Atlantic Ocean is analyzed by means of power spectral density (PSD) analysis and detrended fluctuation analysis (DFA). It is found that the intensity of large-scale variability is changeable with time, and long memory analysis can be used to detect this possible intensity variation quantitatively. By estimating long-term memory (LTM) in subrecords of different time intervals, a century-scale variation of LTM is revealed, which further indicates a century-scale intensity modulation of the large-scale temperature variability. At the beginning of the nineteenth and twentieth centuries, the large-scale variability is more apparent, whereas in the second half of the nineteenth and twentieth centuries the large-scale variability becomes less significant. Considering the importance of large-scale variability, the findings herein suggest a new perspective on the understanding of climatic change.

Corresponding author address: Zuntao Fu, Laboratory for Climate and Ocean–Atmosphere Studies, Dept. of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China. E-mail: fuzt@pku.edu.cn
Save
  • Becker, D. E., L. C. Peterson, J. T. Overpeck, A. Kaplan, M. N. Evans, and M. Kashgarian, 1999: Eight centuries of North Atlantic Ocean atmosphere variability. Science, 286, 1709–1713.

    • Search Google Scholar
    • Export Citation
  • Blender, R., and K. Fraedrich, 2003: Long time memory in global warming simulations. Geophys. Res. Lett., 30, 1769, doi:10.1029/2003GL017666.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., S. Jewson, and A. Brix, 2002: Long memory in surface air temperature: Detection, modeling and application to weather derivative valuation. Climate Res., 21, 127–140.

    • Search Google Scholar
    • Export Citation
  • Chen, X., G. Lin, and Z. Fu, 2007: Long-range correlations in daily relative humidity fluctuations: A new index to characterize the climate regions over China. Geophys. Res. Lett.,34, L07804, doi:10.1029/2006GL027755.

  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.

    • Search Google Scholar
    • Export Citation
  • Dima, M., and G. Lohmann, 2004: Fundamental and derived modes of climate variability: Concept and application to interannual time-scales. Tellus, 56A, 229–249.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K. and R. Blender, 2003: Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett.,90, 108501, doi:10.1103/PhysRevLett.90.108501.

  • Franzke, C., 2013: Persistent regimes and extreme events of the North Atlantic atmospheric circulation. Philos. Trans. Roy. Soc.,371A, 20110471, doi:10.1098/rsta.2011.0471.

  • Franzke, C., and T. Woollings, 2011: On the persistence and predictability properties of North Atlantic climate variability. J. Climate, 24, 466–472.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., T. Woollings, and O. Martius, 2011: Persistent circulation regimes and preferred regime transitions in the North Atlantic. J. Atmos. Sci., 68, 2809–2825.

    • Search Google Scholar
    • Export Citation
  • Gray, S. T., L. J. Graumlich, J. L. Betancourt, and G. T. Pederson, 2004: A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1576 A.D. Geophys. Res. Lett.,31, L12205, doi:10.1029/2004GL019932.

  • Grosfeld, K., G. Lohmann, N. Rimbu, K. Fraedrich, and F. Lunkeit, 2007: Atmospheric multidecadal variations in the North Atlantic realm: Proxy data, observations, and atmospheric circulation model studies. Climate Past, 3, 39–50.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models, Part I: Theory. Tellus, 28, 473–485.

  • Kantelhardt, J. W., E. Koscielny-Bunde, H. H. A. Rego, S. Havlin, and A. Bunde, 2001: Detecting long-range correlations with detrended fluctuation analysis. Physica A, 295, 441–454.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 84–88.

    • Search Google Scholar
    • Export Citation
  • Koscielny-Bunde, E., A. Bunde, S. Havlin, H. E. Roman, Y. Goldreich, and H. J. Schellnhuber, 1998: Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett., 81, 729–732.

    • Search Google Scholar
    • Export Citation
  • Lennartz, S. and A. Bunde, 2009: Trend evaluation in records with long-term memory: Application to global warming. Geophys. Res. Lett.,36, L16706, doi:10.1029/2009GL039516.

  • Lohmann, G., N. Rimbu, and M. Dima, 2004: Climate signature of solar irradiance variations: Analysis of long-term instrumental, historical, and proxy data. Int. J. Climatol., 24, 1045–1056.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., 2011: On long range dependence in global surface temperature series. Climatic Change, 107, 267–276.

  • Mann, M. E., J. Park, and R. S. Bradley, 1995: Global interdecadal and century-scale climate oscillations during the past five centuries. Nature, 378, 266–270.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779–787.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 1863–1898.

    • Search Google Scholar
    • Export Citation
  • Ottera, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688–694.

    • Search Google Scholar
    • Export Citation
  • Peng, C. K., S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, 1994: Mosaic organization of DNA nucleotides. Phys. Rev., 49E, 1685–1689.

    • Search Google Scholar
    • Export Citation
  • Podobnik, B. and H. E. Stanley, 2008: Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series. Phys. Rev. Lett.,100, 084102, doi:10.1103/PhysRevLett.100.084102.

  • Rybski, D., and A. Bunde, 2009: On the detection of trends in long-term correlated records. Physica A, 388, 1687–1695.

  • Rybski, D., A. Bunde, S. Havlin, and H. von Storch, 2006: Long-term persistence in climate and the detection problem. Geophys. Res. Lett.,33, L06718, doi:10.1029/2005GL025591.

  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723–726.

    • Search Google Scholar
    • Export Citation
  • Soon, W. W. H., 2005: Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years. Geophys. Res. Lett.,32, L16712, doi:10.1029/2005GL023429.

  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115–118.

    • Search Google Scholar
    • Export Citation
  • Talkner, P., and R. O. Weber, 2000: Power spectrum and detrended fluctuation analysis: Application to daily temperatures. Phys. Rev., 62E, 150–160.

    • Search Google Scholar
    • Export Citation
  • Vyushin, D. I., and P. J. Kushner, 2008: Power-law and long-memory characteristics of the atmospheric general circulation. J. Climate, 22, 2890–2904.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett.,34, L02709, doi:10.1029/2006GL028683.

  • Zhu, X., K. Fraedrich, Z. Liu, and R. Blender, 2010: A demonstration of long-term memory and climate predictability. J. Climate, 23, 5021–5029.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 764 443 24
PDF Downloads 164 33 4