Cloud Feedbacks, Rapid Adjustments, and the Forcing–Response Relationship in a Transient CO2 Reversibility Scenario

Timothy Andrews Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Timothy Andrews in
Current site
Google Scholar
PubMed
Close
and
Mark A. Ringer Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Mark A. Ringer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Hadley Centre Global Environment Model, version 2–Earth System (HadGEM2-ES) climate model is forced by a 1% yr−1 compound increase in atmospheric CO2 for 140 years, followed by a 1% yr−1 CO2 decrease back to the starting level. Analogous atmosphere-only simulations are performed to diagnose the component of change associated with the effective radiative forcing and rapid adjustments. The residual change is associated with radiative feedbacks that are shown to be linearly related to changes in global-mean surface air temperature and are found to be reversible under this experimental design, even for regional cloud feedback changes. The cloud adjustment is related to changes in cloud amount, with little indication of any large-scale changes in cloud optical depth. Plant physiological forcing plays a significant role in determining the cloud adjustment in this model and is the dominant contribution to the low-level cloud changes over land. Low-level cloud adjustments are associated with changes in surface turbulent fluxes and lower tropospheric stability, with significant adjustments in boundary layer cloud types and in the depth of the boundary layer itself. The linearity of simple forcing–response frameworks are examined and found to be generally applicable. Small regional departures from linearity occur during the early part of the ramp-down phase, where the Southern Ocean and eastern tropical Pacific continue to warm for a few decades, despite the reversal in radiative forcing and global temperatures. The importance of considering time-varying patterns of warming and regional phenomena when diagnosing and understanding feedbacks in a coupled atmosphere–ocean framework is highlighted.

Corresponding author address: Timothy Andrews, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: timothy.andrews@metoffice.gov.uk

Abstract

The Hadley Centre Global Environment Model, version 2–Earth System (HadGEM2-ES) climate model is forced by a 1% yr−1 compound increase in atmospheric CO2 for 140 years, followed by a 1% yr−1 CO2 decrease back to the starting level. Analogous atmosphere-only simulations are performed to diagnose the component of change associated with the effective radiative forcing and rapid adjustments. The residual change is associated with radiative feedbacks that are shown to be linearly related to changes in global-mean surface air temperature and are found to be reversible under this experimental design, even for regional cloud feedback changes. The cloud adjustment is related to changes in cloud amount, with little indication of any large-scale changes in cloud optical depth. Plant physiological forcing plays a significant role in determining the cloud adjustment in this model and is the dominant contribution to the low-level cloud changes over land. Low-level cloud adjustments are associated with changes in surface turbulent fluxes and lower tropospheric stability, with significant adjustments in boundary layer cloud types and in the depth of the boundary layer itself. The linearity of simple forcing–response frameworks are examined and found to be generally applicable. Small regional departures from linearity occur during the early part of the ramp-down phase, where the Southern Ocean and eastern tropical Pacific continue to warm for a few decades, despite the reversal in radiative forcing and global temperatures. The importance of considering time-varying patterns of warming and regional phenomena when diagnosing and understanding feedbacks in a coupled atmosphere–ocean framework is highlighted.

Corresponding author address: Timothy Andrews, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: timothy.andrews@metoffice.gov.uk
Save
  • Andrews, T., and P. M. Forster, 2008: CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys. Res. Lett., 35, L04802, doi:10.1029/2007GL032273.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., M. Doutriaux-Boucher, O. Boucher, and P. M. Forster, 2011: A regional and global analysis of carbon dioxide physiological forcing and its impact on climate. Climate Dyn., 36, 783792, doi:10.1007/s00382-010-0742-1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, P. M. Forster, and M. J. Webb, 2012a: Cloud adjustment and its role in CO2 radiative forcing and climate sensitivity: A review. Surv. Geophys., 33, 619635, doi:10.1007/s10712-011-9152-0.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012b: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., M. A. Ringer, M. Doutriaux-Boucher, M. J. Webb, and W. J. Collins, 2012c: Sensitivity of an Earth system climate model to idealized radiative forcing. Geophys. Res. Lett., 39, L10702, doi:10.1029/2012GL051942.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., I. Eisenman, E. Blanchard-Wrigglesworth, K. E. McCusker, and C. M. Bitz, 2011: The reversibility of sea ice loss in a state-of-the-art climate model. Geophys. Res. Lett., 38, L16705, doi:10.1029/2011GL048739.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 4518–4534.

  • Boer, G. J., and B. Yu, 2003: Climate sensitivity and response. Climate Dyn., 20, 415429.

  • Boucher, O., A. Jones, and R. A. Betts, 2009: Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Climate Dyn., 32, 237249.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2012: Reversibility in an Earth system model in response to CO2 concentration changes. Environ. Res. Lett., 7, 024013, doi:10.1088/1748-9326/7/2/024013.

    • Search Google Scholar
    • Export Citation
  • Bouttes, N., J. M. Gregory, and J. A. Lowe, 2013: The reversibility of sea level rise. J. Climate, 26, 25022513.

  • Cao, L., G. Bala, K. Caldeira, R. Nemani, and G. Ban-Weiss, 2010: Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl. Acad. Sci. USA, 107, 95139518.

    • Search Google Scholar
    • Export Citation
  • Cao, L., G. Bala, and K. Caldeira, 2011: Why is there a short-term increase in global precipitation in response to diminished CO2 forcing? Geophys. Res. Lett., 38, L06703, doi:10.1029/2011GL046713.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Wu, P. Good, and T. Andrews, 2013: Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments. Climate Dyn., 40, 295316, doi:10.1007/s00382-012-1287-2.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Search Google Scholar
    • Export Citation
  • Colman, R., and B. McAvaney, 2011: On tropospheric adjustment to forcing and climate feedbacks. Climate Dyn., 36, 16491658, doi:10.1007/s00382-011-1067-4.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and P. R. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 24942499.

    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097.

    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., M. J. Webb, J. M. Gregory, and O. Boucher, 2009: Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys. Res. Lett., 36, L02703, doi:10.1029/2008GL036273.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. Taylor, 2006: Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J. Climate, 19, 61816194.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 1139–1150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., K. H. Cook, and M. E. Schlesinger, 1981: Preliminary analysis of experiments on the climatic effects of increased CO2 with an atmospheric general circulation model and a climatological ocean. J. Geophys. Res., 86 (C7), 63856393.

    • Search Google Scholar
    • Export Citation
  • Good, P., J. M. Gregory, and J. A. Lowe, 2011: A step-response simple climate model to reconstruct and interpret AOGCM projections. Geophys. Res. Lett., 38, L01703, doi:10.1029/2010GL045208.

    • Search Google Scholar
    • Export Citation
  • Good, P., J. M. Gregory, J. A. Lowe, and T. Andrews, 2013: Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections. Climate Dyn., 40, 10411053, doi:10.1007/s00382-012-1410-4.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and J. F. B. Mitchell, 1997: The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment. Geophys. Res. Lett., 24, 19431946.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and M. J. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871.

  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

  • Hasselmann, K., R. Sausen, E. Maier-Reimer, and R. Voss, 1993: On the cold start problem in transient simulations with coupled atmosphere–ocean models. Climate Dyn., 9, 5361.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., and M. Watanabe, 2012: On the robustness of tropospheric adjustment in CMIP5 models. Geophys. Res. Lett., 39, L23808, doi:10.1029/2012GL054275.

    • Search Google Scholar
    • Export Citation
  • Kamae, Y., and M. Watanabe, 2013: Tropospheric adjustment to increasing CO2: Its timescale and the role of land–sea contrast. Climate Dyn., 41, 3007–3024, doi:10.1007/s00382-012-1555-1.

    • Search Google Scholar
    • Export Citation
  • Keen, A. B., and J. M. Murphy, 1997: Influence of natural variability and the cold start problem on the simulated transient response to increasing CO2. Climate Dyn., 13, 847864, doi:10.1007/s003820050201.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, doi:10.1029/2012GL052952.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., M. J. Webb, and M. M. Joshi, 2011: The relationship between land–ocean surface temperature contrast and radiative forcing. J. Climate, 24, 32393256.

    • Search Google Scholar
    • Export Citation
  • Li, C., J.-S. V. Storch, and J. Marotzke, 2013: Deep-ocean heat uptake and equilibrium climate response. Climate Dyn., 40, 1071–1086, doi:10.1007/s00382-012-1350-z.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., and Coauthors, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199.

    • Search Google Scholar
    • Export Citation
  • Long, D. J., and M. Collins, 2013: Quantifying global climate feedbacks, responses and forcing under abrupt and gradual CO2 forcing. Climate Dyn., 41, 2471–2479, doi:10.1007/s00382-013-1677-0.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2000: A new boundary layer mixing scheme. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev., 128, 32003217.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model Climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., 1983: The seasonal response of a general circulation model to changes in CO2 and sea temperatures. Quart. J. Roy. Meteor. Soc., 109, 113152.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., and W. J. Ingram, 1992: Carbon dioxide and climate: Mechanisms of changes in cloud. J. Climate, 5, 521.

  • Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 27152718.

    • Search Google Scholar
    • Export Citation
  • Raper, S. C. B., J. M. Gregory, and R. J. Stouffer, 2002: The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Climate, 15, 124130.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 14021406.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. Geophys. Res. Lett., 21, 26852688, doi:10.1029/2000GL011373.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., J. Cook, E. J. Highwood, and M. J. Joshi, 2003: An alternative to radiative forcing for estimating the relative importance of climate change mechanisms. Geophys. Res. Lett., 30, 2047, doi:10.1029/2003GL018141.

    • Search Google Scholar
    • Export Citation
  • Tomassini, L., and Coauthors, 2013: The respective roles of surface temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 transient climate simulations. Climate Dyn., 41, 3103–3126, doi:10.1007/s00382-013-1682-3.

    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 3339–3362, doi:10.1007/s00382-013-1725-9.

    • Search Google Scholar
    • Export Citation
  • Vilà-Guerau de Arellano, J., C. C. van Heerwaarden, and J. Lelieveld, 2012: Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nat. Geosci., 5, 701704, doi:10.1038/ngeo1554.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., H. Shiogama, M. Yoshimori, T. Ogura, T. Yokohata, H. Okamoto, S. Emori, and M. Kimoto, 2012: Fast and slow timescales in the tropical low-cloud response to increasing CO2 in two climate models. Climate Dyn., 39, 16271641, doi:10.1007/s00382-011-1178-y.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and A. P. Lock, 2013: Coupling between subtropical cloud feedback and the local hydrological cycle in a climate model. Climate Dyn., 41, 1923–1939, doi:10.1007/s00382-012-1608-5.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., C. A. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess cloud in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., F. H. Lambert, and J. M. Gregory, 2013: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 40, 677–707, doi:10.1007/s00382-012-1336-x.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., W. J. Ingram, and J. M. Gregory, 2008: Time variation of effective climate sensitivity in GCMs. J. Climate, 21, 50765090.

    • Search Google Scholar
    • Export Citation
  • Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean heat uptake efficacy to transient climate change. J. Climate, 23, 23332344.

    • Search Google Scholar
    • Export Citation
  • Wu, P., R. Wood, J. Ridley, and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett., 37, L12705, doi:10.1029/2010GL043730.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, P. N. Blossey, and M. Khairoutdinov, 2012: Fast cloud adjustment to increasing CO2 in a superparameterized climate model. J. Adv. Model. Earth Syst., 4, M05001, doi:10.1029/2011MS000092.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 5007–5027.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1775 1046 59
PDF Downloads 573 106 7