Estimating Global Ocean Heat Content Changes in the Upper 1800 m since 1950 and the Influence of Climatology Choice

John M. Lyman Joint Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by John M. Lyman in
Current site
Google Scholar
PubMed
Close
and
Gregory C. Johnson NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Gregory C. Johnson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ocean heat content anomalies are analyzed from 1950 to 2011 in five distinct depth layers (0–100, 100–300, 300–700, 700–900, and 900–1800 m). These layers correspond to historic increases in common maximum sampling depths of ocean temperature measurements with time, as different instruments—mechanical bathythermograph (MBT), shallow expendable bathythermograph (XBT), deep XBT, early sometimes shallower Argo profiling floats, and recent Argo floats capable of worldwide sampling to 2000 m—have come into widespread use. This vertical separation of maps allows computation of annual ocean heat content anomalies and their sampling uncertainties back to 1950 while taking account of in situ sampling advances and changing sampling patterns. The 0–100-m layer is measured over 50% of the globe annually starting in 1956, the 100–300-m layer starting in 1967, the 300–700-m layer starting in 1983, and the deepest two layers considered here starting in 2003 and 2004, during the implementation of Argo. Furthermore, global ocean heat uptake estimates since 1950 depend strongly on assumptions made concerning changes in undersampled or unsampled ocean regions. If unsampled areas are assumed to have zero anomalies and are included in the global integrals, the choice of climatological reference from which anomalies are estimated can strongly influence the global integral values and their trend: the sparser the sampling and the bigger the mean difference between climatological and actual values, the larger the influence.

Pacific Marine Environmental Laboratory Contribution Number 3884 and Joint Institute for Marine and Atmospheric Research Contribution Number 12-380.

Corresponding author address: John Lyman, NOAA/Pacific Marine Environmental Laboratory, 7600 Sand Point Way N.E., Bldg. 3, Seattle, WA 98115-6349. E-mail: john.lyman@noaa.gov

Abstract

Ocean heat content anomalies are analyzed from 1950 to 2011 in five distinct depth layers (0–100, 100–300, 300–700, 700–900, and 900–1800 m). These layers correspond to historic increases in common maximum sampling depths of ocean temperature measurements with time, as different instruments—mechanical bathythermograph (MBT), shallow expendable bathythermograph (XBT), deep XBT, early sometimes shallower Argo profiling floats, and recent Argo floats capable of worldwide sampling to 2000 m—have come into widespread use. This vertical separation of maps allows computation of annual ocean heat content anomalies and their sampling uncertainties back to 1950 while taking account of in situ sampling advances and changing sampling patterns. The 0–100-m layer is measured over 50% of the globe annually starting in 1956, the 100–300-m layer starting in 1967, the 300–700-m layer starting in 1983, and the deepest two layers considered here starting in 2003 and 2004, during the implementation of Argo. Furthermore, global ocean heat uptake estimates since 1950 depend strongly on assumptions made concerning changes in undersampled or unsampled ocean regions. If unsampled areas are assumed to have zero anomalies and are included in the global integrals, the choice of climatological reference from which anomalies are estimated can strongly influence the global integral values and their trend: the sparser the sampling and the bigger the mean difference between climatological and actual values, the larger the influence.

Pacific Marine Environmental Laboratory Contribution Number 3884 and Joint Institute for Marine and Atmospheric Research Contribution Number 12-380.

Corresponding author address: John Lyman, NOAA/Pacific Marine Environmental Laboratory, 7600 Sand Point Way N.E., Bldg. 3, Seattle, WA 98115-6349. E-mail: john.lyman@noaa.gov
Save
  • Barker, P. M., J. R. Dunn, C. M. Domingues, and S. E. Wijffels, 2011: Pressure sensor drifts in Argo and their impacts. J. Atmos. Oceanic Technol., 28, 10361049.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 385–432.

  • Boyer, T. P., and Coauthors, 2009: World Ocean Database 2009. S. Levitus, Ed., NOAA Atlas NESDIS 66, 216 pp.

  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiment applied to MODE-73. Deep-Sea Res., 23, 559582.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., B. S. Giese, X. Cao, and L. Miller, 1996: Impact of altimeter, thermistor, and expendable bathythermograph data on retrospective analyses of the tropical Pacific Ocean. J. Geophys. Res., 101, 14 14714 159.

    • Search Google Scholar
    • Export Citation
  • Cowley, R., S. Wijffels, L. Cheng, T. Boyer, and S. Kizu, 2013: Biases in expendable bathythermograph data: A new view based on historical side-by side comparisons. J. Atmos. Oceanic Technol., 30, 11951225.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea level rise. Nature, 453, 10901094, doi:10.1038/nature07080.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 1998: Data Analysis Methods in Physical Oceanography. Elsevier, 634 pp.

  • Gleckler, P. J., and Coauthors, 2012: Human-induced global ocean warming on multidecadal timescales. Nat. Climate Change, 2, 524529, doi:10.1038/NCLIMATE1553.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and F. Reseghetti, 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833, doi:10.1016/j.dsr.2010.03.011.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., J. Kennedy, T. Boyer, and A. Köhl, 2012: Consistent near-surface ocean warming since 1900 in two largely independent observing networks. Geophys. Res. Lett., 39, L19606, doi:10.1029/2012GL052975.

    • Search Google Scholar
    • Export Citation
  • Hamon, M., G. Reverdin, and P.-Y. Le Traon, 2012: Empirical correction of XBT data. J. Atmos. Oceanic Technol., 29, 960973.

  • Harrison, D. E., and N. K. Larkin, 1998: El Niño–Southern Oscillation sea surface temperature and wind anomalies, 1946–1993. Rev. Geophys., 36, 353399, doi:10.1029/98RG00715.

    • Search Google Scholar
    • Export Citation
  • Ingleby, B., and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles—Historical and real-time data. J. Mar. Syst., 65, 158175, doi:10.1016/j.jmarsys.2005.11.019.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., and M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299, doi:10.1007/s10872-009-0027-7.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and S. E. Wijffels, 2011: Ocean density change contributions to sea level rise. Oceanography, 24, 112121, doi:10.5670/oceanog.2011.31.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., M. J. McPhaden, G. D. Rowe, and K. E. McTaggart, 2000: Upper equatorial Pacific Ocean current and salinity variability during the 1996–1998 El Niño–La Niña cycle. J. Geophys. Res., 105 (C1), 10371053.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., J. M. Lyman, J. K. Willis, S. Levitus, T. Boyer, J. Antonov, and S. A. Good, 2012: Global oceans: Ocean heat content [in “State of the Climate in 2011”]. Bull. Amer. Meteor. Soc.,93 (7), S62–S65.

  • Kouketsu, S., and Coauthors, 2011: Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res., 116, C03012, doi:10.1029/2010JC006464.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2001: Tropical Pacific ENSO cold events, 1946–95: SST, SLP, and surface wind composite anomalies. J. Climate, 14, 39043931.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Llovel, A., I. Funkumori, and B. Meyssignax, 2013: Depth-dependent temperature change contributions to global mean thermosteric sea level rise from 1960 to 2010. Global Planet. Change,101, 113–118, doi:10.1016/j.gloplacha.2012.12.011.

  • Lozier, M. S., S. J. Leadbetter, R. G. Williams, V. Roussenov, M. S. C. Reed, and N. J. Moore, 2008: The spatial pattern and mechanisms of heat content change in the North Atlantic. Science, 319, 800803, doi:10.1126/science.1146436.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., and G. C. Johnson, 2008: Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling. J. Climate, 21, 56295641.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., S. A. Good, V. V. Gouretski, M. Ishii, G. C. Johnson, M. D. Palmer, D. M. Smith, and J. K. Willis, 2010: Robust warming of the global upper ocean. Nature, 465, 334337, doi:10.1038/nature09043.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., A. Melsom, and R. T. Sutton, 2012: Importance of density-compensated temperature change for deep North Atlantic Ocean heat uptake. Nat. Geosci., 5, 905910, doi:10.1038/ngeo1639.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and P. Brohan, 2011: Estimating sampling uncertainty in fixed-depth and fixed-isotherm estimates of ocean warming. Int. J. Climatol., 31, 980986, doi:10.1002/joc.2224.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., K. Haines, S. F. B. Tett, and T. J. Hansell, 2007: Isolating the signal of ocean global warming. Geophys. Res. Lett., 34, L23610, doi:10.1029/2007GL031712.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and Coauthors, 2010: Future observations for monitoring global ocean heat content. Proceedings of the OceanObs’ 09: Sustained Ocean Observations and Information for Society Conference, Vol. 2, ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.68.

  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean between the 1990s and the 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2011: The global ocean imprint of ENSO. Geophys. Res. Lett., 38, L13606, doi:10.1029/2011GL047992.

  • Roemmich, D., and Coauthors, 2009: The Argo Program: Observing the global oceans with profiling floats. Oceanography, 22, 3443.

  • Roemmich, D., W. J. Gould, and J. Gilson, 2012: 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nat. Climate Change, 2, 425428, doi:10.1038/nclimate1461.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540–544, doi:10.1038/ngeo1826.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and P.-Y. Le Traon, 2011: How well can we derive global ocean indicators from Argo data? Ocean Sci., 7, 783791, doi:10.5194/os-7-783-2011.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., F. Gaillard, and P.-Y. Le Traon, 2009: Global hydrographic variability patterns during 2003–2008. J. Geophys. Res., 114, C09007, doi:10.1029/2008JC005237.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 2008: Nansen-bottle stations at the Woods Hole Oceanographic Institution. Deep-Sea Res. I,55, 379–395, doi:10.1016/j.dsr.2007.10.003.

  • Wijffels, S. E., J. Willis, C. M. Domingues, P. Barker, N. J. White, A. Gronell, K. Ridgway, and J. A. Church, 2008: Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J. Climate, 21, 56575672.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., D. Roemmich, and B. Cornuelle, 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res., 109, C12036, doi:10.1029/2003JC002260.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2473 577 50
PDF Downloads 1063 184 16