Neural Network–Based Sensitivity Analysis of Summertime Convection over the Continental United States

Filipe Aires Estellus, and Laboratoire de l’Etude du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France, and Department of Earth and Environmental Engineering, Columbia University, New York, New York

Search for other papers by Filipe Aires in
Current site
Google Scholar
PubMed
Close
,
Pierre Gentine Department of Earth and Environmental Engineering, Columbia University, New York, New York

Search for other papers by Pierre Gentine in
Current site
Google Scholar
PubMed
Close
,
Kirsten L. Findell Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Kirsten L. Findell in
Current site
Google Scholar
PubMed
Close
,
Benjamin R. Lintner Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Benjamin R. Lintner in
Current site
Google Scholar
PubMed
Close
, and
Christopher Kerr University Corporation for Atmospheric Research/GFDL, Princeton, New Jersey

Search for other papers by Christopher Kerr in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although land–atmosphere coupling is thought to play a role in shaping the mean climate and its variability, it remains difficult to quantify precisely. The present study aims to isolate relationships between early morning surface turbulent fluxes partitioning [i.e., evaporative fraction (EF)] and subsequent afternoon convective precipitation frequency and intensity. A general approach involving statistical relationships among input and output variables, known as sensitivity analysis (SA), is used to develop a reduced complexity metamodel of the linkage between EF and convective precipitation. Two additional quantities characterizing the early morning convective environment, convective triggering potential (CTP) and low-level humidity (HIlow) deficit, are included. The SA approach is applied to the North American Regional Reanalysis (NARR) for June–August (JJA) conditions over the entire continental United States, Mexico, and Central America domain. Five land–atmosphere coupling regimes are objectively characterized based on CTP, HIlow, and EF. Two western regimes are largely atmospherically controlled, with a positive link to CTP and a negative link to HIlow. The other three regimes occupy Mexico and the eastern half of the domain and show positive links to EF and negative links to HIlow, suggesting that both surface fluxes and atmospheric humidity play a role in the triggering of rainfall in these regions. The regimes associated with high mean EF also tend to have high sensitivity of rainfall frequency to variations in EF. While these results may be sensitive to the choice of dataset, the approach can be applied across observational, reanalysis, and model datasets and thus represents a potentially powerful tool for intercomparison and validation as well as for characterizing land–atmosphere interaction regimes.

Corresponding author address: F. Aires, Estellus, LERMA Observatoire de Paris, 61 avenue de l’Observatoire, 74014 Paris, France. E-mail: filipe.aires@estellus.fr

Abstract

Although land–atmosphere coupling is thought to play a role in shaping the mean climate and its variability, it remains difficult to quantify precisely. The present study aims to isolate relationships between early morning surface turbulent fluxes partitioning [i.e., evaporative fraction (EF)] and subsequent afternoon convective precipitation frequency and intensity. A general approach involving statistical relationships among input and output variables, known as sensitivity analysis (SA), is used to develop a reduced complexity metamodel of the linkage between EF and convective precipitation. Two additional quantities characterizing the early morning convective environment, convective triggering potential (CTP) and low-level humidity (HIlow) deficit, are included. The SA approach is applied to the North American Regional Reanalysis (NARR) for June–August (JJA) conditions over the entire continental United States, Mexico, and Central America domain. Five land–atmosphere coupling regimes are objectively characterized based on CTP, HIlow, and EF. Two western regimes are largely atmospherically controlled, with a positive link to CTP and a negative link to HIlow. The other three regimes occupy Mexico and the eastern half of the domain and show positive links to EF and negative links to HIlow, suggesting that both surface fluxes and atmospheric humidity play a role in the triggering of rainfall in these regions. The regimes associated with high mean EF also tend to have high sensitivity of rainfall frequency to variations in EF. While these results may be sensitive to the choice of dataset, the approach can be applied across observational, reanalysis, and model datasets and thus represents a potentially powerful tool for intercomparison and validation as well as for characterizing land–atmosphere interaction regimes.

Corresponding author address: F. Aires, Estellus, LERMA Observatoire de Paris, 61 avenue de l’Observatoire, 74014 Paris, France. E-mail: filipe.aires@estellus.fr
Save
  • Aires, F., and W. Rossow, 2003: Inferring instantaneous, multivariate and nonlinear sensitivities for the analysis of feedback processes in a dynamical system: The Lorenz model case study. Quart. J. Roy. Meteor. Soc., 129, 239275.

    • Search Google Scholar
    • Export Citation
  • Aires, F., and C. Prigent, 2007: Sampling techniques in high-dimensional spaces for satellite remote sensing database. J. Geophys. Res., 112, D20301, doi:10.1029/2007JD008391.

    • Search Google Scholar
    • Export Citation
  • Berg, A., K. Findell, B. Lintner, P. Gentine, and C. Kerr, 2013: Precipitation sensitivity to surface heat fluxes over North America in reanalysis and model data. J. Hydrometeor.,14, 722–743.

  • Berg, L., and R. Stull, 2004: Parameterization of joint frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer. J. Atmos. Sci., 61, 813828.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. Silva Dias, 2010: Progress in understanding land-surface-atmosphere coupling from LBA research. J. Adv. Model. Earth Syst., 2 (6), doi:10.3894/JAMES.2010.2.6.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. Ball, A. Beljaars, M. Miller, and P. Viterbo, 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225.

    • Search Google Scholar
    • Export Citation
  • Bishop, C., 1996: Neural Networks for Pattern Recognition. Clarendon Press, 482 pp.

  • Brubaker, K., and D. Entekhabi, 1996: Analysis of feedback mechanisms in land–atmosphere interaction. Water Resour. Res., 32, 13431357.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K., D. Entekhabi, and P. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089.

  • Chen, Y., J. Miller, J. Francis, G. Russell, and F. Aires, 2003: Observed and modeled relationships among Arctic climate variables. J. Geophys. Res., 108, 4799, doi:10.1029/2003JD003824.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., F. Aires, J. Francis, and J. Miller, 2006: Observed relationships between Arctic longwave cloud forcing and cloud parameters using a neural network. J. Climate,19, 4087–4104.

  • Cook, B. I., G. B. Bonan, and S. Levis, 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206.

  • Crago, R., 1996: Conservation and variability of the evaporative fraction during the daytime. J. Hydrol., 180, 173194.

  • Crago, R., and W. Brutsaert, 1996: Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio. J. Hydrol., 178, 241255.

    • Search Google Scholar
    • Export Citation
  • Cybenko, G., 1989: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst., 2, 303314.

  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104 (D6), 63776402.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., R. D. Koster, and Z. Guo, 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., K. L. Brubaker, and T. DelSole, 2009: Import and export of atmospheric water vapor between nations. J. Hydrol., 365, 1122.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, X.-Z. Liang, and M. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530.

    • Search Google Scholar
    • Export Citation
  • Ek, M., and A. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699.

  • Eltahir, E., 1989: A feedback mechanism in annual rainfall, central Sudan. J. Hydrol., 110, 323334.

  • Eltahir, E., and R. Bras, 1996: Precipitation recycling. Rev. Geophys., 34, 367378.

  • Entekhabi, D., I. Rodriguez-Iturbe, and R. L. Bras, 1992: Variability in large-scale water balance with land surface–atmosphere interaction. J. Climate, 5, 798813.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C., and E. Wood, 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 12211254.

    • Search Google Scholar
    • Export Citation
  • Findell, K., and E. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor.,4, 552–569.

  • Findell, K., and E. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor.,4, 570–583.

  • Findell, K., P. Gentine, B. Lintner, and C. Kerr, 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, A. Chehbouni, G. Boulet, and B. Duchemin, 2007: Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteor., 143, 1329.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, and J. Polcher, 2010: Spectral behaviour of a coupled land-surface and boundary-layer system. Bound.-Layer Meteor., 134, 157180.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, and J. Polcher, 2011: The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. J. Hydrometeor., 12, 15301546.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. Betts, B. Lintner, K. Findell, C. van Heerwaarden, A. Tzella, and F. D’Andrea, 2013a: A probabilistic-bulk model of coupled convection. Part I: Clear-sky case. J. Atmos. Sci.,70, 1543–1556.

  • Gentine, P., A. A. M. Holtslag, F. D’Andrea, and M. Ek, 2013b: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 1443–1462.

    • Search Google Scholar
    • Export Citation
  • Grieger, B., and M. Latif, 1994: Reconstruction of the El Niño attractor with neural networks. Climate Dyn., 10, 267276, doi:10.1007/BF00228027.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, and T. DelSole, 2012: Rebound in atmospheric predictability and the role of the land surface. J. Climate, 25, 47444749.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020.

    • Search Google Scholar
    • Export Citation
  • Hornik, K., M. Stinchcombe, and H. White, 1989: Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359366.

    • Search Google Scholar
    • Export Citation
  • Hornik, K., M. Stinchcombe, and H. White, 1990: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3, 551560.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., N.-C. Lau, and S. A. Klein, 2006: Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great Plains. Geophys. Res. Lett., 33, L19809, doi:10.1029/2006GL027022.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., R. Oren, S. Manzoni, C. Higgins, and M. B. Parlange, 2012: Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev. Geophys., 50, RG3002, doi:10.1029/2011RG000366.

    • Search Google Scholar
    • Export Citation
  • Kleijnen, J., 2010: Design and Analysis of Simulation Experiments. Springer, 232 pp.

  • Koster, R. D., and M. J. Suarez, 1994: The components of a ‘SVAT’ scheme and their effects on a GCM’s hydrological cycle. Adv. Water Resour., 17, 6178.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and S. P. Mahanama, 2012: Land surface controls on hydroclimatic means and variability. J. Hydrometeor., 13, 16041620.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30, 1241, doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., S. Schubert, M. J. Suarez, J.-K. E. Schemm, H.-L. Pan, J. Han, and S.-H. Yoo, 2008: Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. J. Geophys. Res., 113, D02111, doi:10.1029/2007JD008984.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2009: Soil moisture impacts on convective margins. J. Hydrometeor., 10, 10261039.

  • Lintner, B. R., P. Gentine, K. Findell, F. D’Andrea, A. Sobel, and G. D. Salvucci, 2013: An idealized prototype for large-scale land–atmosphere coupling. J. Climate, 26, 2379–2389.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Coauthors, 2012: A framework of benchmarking land models. Biogeosci. Discuss., 9, 18991944, doi:10.5194/bgd-9-1899-2012.

    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., and D. Entekhabi, 2001: Feedback between the land surface energy balance and atmospheric boundary layer diagnosed through a model and its adjoint. J. Hydrometeor., 2, 599620.

    • Search Google Scholar
    • Export Citation
  • Marrel, A., B. Iooss, F. V. Dorpe, and E. Volkova, 2008: An efficient methodology for modeling complex computer codes with Gaussian processes. Comput. Stat. Data Anal., 52, 47314744.

    • Search Google Scholar
    • Export Citation
  • Marrel, A., B. Iooss, M. Jullien, B. Laurent, and E. Volkova, 2011: Global sensitivity analysis for models with spatially dependent outputs. Environmetrics, 22, 383397.

    • Search Google Scholar
    • Export Citation
  • Mei, R., and G. Wang, 2012: Summer land–atmosphere coupling strength in the United States: Comparison among observations, reanalysis data, and numerical models. J. Hydrometeor.,13, 1010–1022.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360.

  • Milly, P., and K. Dunne, 1994: Sensitivity of the global water cycle to the water-holding capacity of land. J. Climate, 7, 506526.

  • Mitchell, K., and Coauthors, 2004: NCEP completes 25-year North American reanalysis: Precipitation assimilation and land surface are two hallmarks. GEWEX News, Vol. 14, International GEWEX Project Office, Silver Spring, MD, 912.

    • Search Google Scholar
    • Export Citation
  • Muller, C., L. Back, P. O’Gorman, and K. Emanuel, 2009: A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett., 36, L16804, doi:10.1029/2009GL039667.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., 2008: Statistical identification of global hot spots in soil moisture feedbacks among IPCC AR4 models. J. Geophys. Res., 113, D09101, doi:10.1029/2007JD009199.

    • Search Google Scholar
    • Export Citation
  • Pal, J., and E. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271242.

    • Search Google Scholar
    • Export Citation
  • Pal, J., and E. Eltahir, 2003: A feedback mechanism between soil-moisture distribution and storm tracks. Quart. J. Roy. Meteor. Soc., 129, 22792297.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 2012: Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction. Quart. J. Roy. Meteor. Soc., 138B, 841861, doi:10.1002/qj.1923.

    • Search Google Scholar
    • Export Citation
  • Pan, H., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38, 185202.

  • Pearl, J., 2009: Causality: Models, Reasoning and Inference. 2nd ed. Cambridge University Press, 484 pp.

  • Peters, O., and J. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393–396, doi:10.1038/nphys314.

  • Pielke, R. A., R. Avissar, M. Raupach, A. J. Dolman, X. B. Zeng, and A. S. Denning, 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biol., 4, 461475.

    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Vinnikov, C. Schlosser, N. Speranskaya, and Y. Xue, 1995: Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models. J. Climate, 8, 1535.

    • Search Google Scholar
    • Export Citation
  • Ruane, A., 2010: NARR’s atmospheric water cycle components. Part II: Summertime mean and diurnal interactions. J. Hydrometeor., 11, 12201233.

    • Search Google Scholar
    • Export Citation
  • Rumelhart, D., G. Hinton, and R. Williams, 1986: Learning internal representations by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L. McClelland, Eds., MIT Press, 318–362.

  • Saltelli, A., K. Chan, and E. M. Scott., Eds., 2000: Sensitivity Analysis: Gauging the Worth of Scientific Models. Wiley, 504 pp.

  • Salvucci, G., 2001: Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation. Water Resour. Res., 37, 13571365.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., M. A. Friedl, and W. P. Kustas, 2005: An empirical investigation of convective planetary boundary layer evolution and its relationship with the land surface. J. Appl. Meteor., 44, 917932.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., M. A. Friedl, and M. Ek, 2007: Convective planetary boundary layer interactions with the land surface at diurnal time scales: Diagnostics and feedbacks. J. Hydrometeor., 8, 10821097.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. D. Peters-Lidard, S. V. Kumar, C. Alonge, and W.-K. Tao, 2009: A modeling and observational framework for diagnosing local land-atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. D. Peters-Lidard, and S. V. Kumar, 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786.

    • Search Google Scholar
    • Export Citation
  • Savenije, H., 1995: New definitions for moisture recycling and the relationship with land-use changes in the Sahel. J. Hydrol., 167, 5778.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and G. Jendritzky, 2004: Climate change: Hot news from summer 2003. Nature, 432, 559560.

  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722–741.

    • Search Google Scholar
    • Export Citation
  • Schär, C., L. Vasilina, F. Pertziger, and S. Dirren, 2004: Seasonal runoff forecasting using precipitation from meteorological data assimilation systems. J. Hydrometeor., 5, 959973.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161.

    • Search Google Scholar
    • Export Citation
  • Simpson, T., D. Lin, and W. Chen, 2001a: Sampling strategies for computer experiments: Design and analysis. Int. J. Reliab. Appl., 2 (3), 20092240.

    • Search Google Scholar
    • Export Citation
  • Simpson, T., J. Poplinski, P. N. Kochet, and J. Allen, 2001b: Metamodels for computer-based engineering design: Survey and recommendations. Eng. Comput., 17 (2), 129150, doi:10.1007/PL00007198.

    • Search Google Scholar
    • Export Citation
  • Storlie, C., L. Swiler, J. Helton, and C. Sallaberry, 2009: Implementation and evaluation of non-parametric regression procedures for sensitivity analysis of computationally demanding models. Reliab. Eng. Syst. Saf., 94 (11), 17351763.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and G. Wang, 2012: The complexity of using a feedback parameter to quantify the soil moisture–precipitation relationship. J. Geophys. Res.,117, D11113, doi:10.1029/2011JD017173.

  • Sutton, C., T. M. Hamill, and T. T. Warner, 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134, 31743189.

    • Search Google Scholar
    • Export Citation
  • Tang, B., W. Hsieh, A. Monahan, and F. Tangang, 2000: Skill comparisons between neural networks and canonical correlation analysis in predicting the equatorial Pacific sea surface temperatures. J. Climate, 13, 287293.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., 2008: Intraseasonal land–atmosphere coupling in the West African monsoon. J. Climate, 21, 66366648.

  • Taylor, C. M., A. Gounou, F. Guichard, P. Harris, R. Ellis, F. Coubreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, doi:10.1038/ngeo1173.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. de Jeu, F. Guichard, P. Harris, and W. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423–426, doi:10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Tuinenburg, O., R. Hutjes, C. Jacobs, and P. Kabat, 2011: Diagnosis of local land–atmosphere feedbacks in India. J. Climate, 24, 251266.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R., and H. Savenije, 2011: Length and time scales of atmospheric moisture recycling, atmospheric chemistry and physics. Atmos. Chem. Phys., 11, 18531863, doi:10.5194/acp-11-1853-2011.

    • Search Google Scholar
    • Export Citation
  • van Herrwaarden, C. C., J. Vilà-Guerau de Arellano, A. F. Moene, and A. A. M. Holtslag, 2009: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 12771291, doi:10.1002/qj.431.

    • Search Google Scholar
    • Export Citation
  • Volkova, E., B. Iooss, and F. Van Dorpe, 2008: Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatrov Institute” radwaste disposal site. Stoch. Environ. Res. Risk Assess.,22, 17–31.

  • Wei, J., and P. Dirmeyer, 2012: Dissecting soil moisture-precipitation coupling. Geophys. Res. Lett., 39, L19711, doi:10.1029/2012GL053038.

    • Search Google Scholar
    • Export Citation
  • Westra, D., G. Steeneveld, and A. Holtslag, 2012: Some observational evidence for dry soils supporting enhanced high relative humidity at the convection boundary layer top. J. Hydrometeor., 13,13471358.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Barlage, C. Castro, and K. Fling, 2010: Comparison of land–precipitation coupling strength using observations and models. J. Hydrometeor.,11, 979–994.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 982 686 60
PDF Downloads 220 34 9