Seasonal Climate Variability and Change in the Pacific Northwest of the United States

John T. Abatzoglou Department of Geography, University of Idaho, Moscow, Idaho

Search for other papers by John T. Abatzoglou in
Current site
Google Scholar
PubMed
Close
,
David E. Rupp Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon

Search for other papers by David E. Rupp in
Current site
Google Scholar
PubMed
Close
, and
Philip W. Mote Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon

Search for other papers by Philip W. Mote in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observed changes in climate of the U.S. Pacific Northwest since the early twentieth century were examined using four different datasets. Annual mean temperature increased by approximately 0.6°–0.8°C from 1901 to 2012, with corroborating indicators including a lengthened freeze-free season, increased temperature of the coldest night of the year, and increased growing-season potential evapotranspiration. Seasonal temperature trends over shorter time scales (<50 yr) were variable. Despite increased warming rates in most seasons over the last half century, nonsignificant cooling was observed during spring from 1980 to 2012. Observations show a long-term increase in spring precipitation; however, decreased summer and autumn precipitation and increased potential evapotranspiration have resulted in larger climatic water deficits over the past four decades. A bootstrapped multiple linear regression model was used to better resolve the temporal heterogeneity of seasonal temperature and precipitation trends and to apportion trends to internal climate variability, solar variability, volcanic aerosols, and anthropogenic forcing. The El Niño–Southern Oscillation and the Pacific–North American pattern were the primary modulators of seasonal temperature trends on multidecadal time scales: solar and volcanic forcing were nonsignificant predictors and contributed weakly to observed trends. Anthropogenic forcing was a significant predictor of, and the leading contributor to, long-term warming; natural factors alone fail to explain the observed warming. Conversely, poor model skill for seasonal precipitation suggests that other factors need to be considered to understand the sources of seasonal precipitation trends.

Corresponding author address: Dr. John T. Abatzoglou, Department of Geography, 875 Perimeter Dr., MS 3021, Moscow, ID 83844-3021. E-mail: jabatzoglou@uidaho.edu

Abstract

Observed changes in climate of the U.S. Pacific Northwest since the early twentieth century were examined using four different datasets. Annual mean temperature increased by approximately 0.6°–0.8°C from 1901 to 2012, with corroborating indicators including a lengthened freeze-free season, increased temperature of the coldest night of the year, and increased growing-season potential evapotranspiration. Seasonal temperature trends over shorter time scales (<50 yr) were variable. Despite increased warming rates in most seasons over the last half century, nonsignificant cooling was observed during spring from 1980 to 2012. Observations show a long-term increase in spring precipitation; however, decreased summer and autumn precipitation and increased potential evapotranspiration have resulted in larger climatic water deficits over the past four decades. A bootstrapped multiple linear regression model was used to better resolve the temporal heterogeneity of seasonal temperature and precipitation trends and to apportion trends to internal climate variability, solar variability, volcanic aerosols, and anthropogenic forcing. The El Niño–Southern Oscillation and the Pacific–North American pattern were the primary modulators of seasonal temperature trends on multidecadal time scales: solar and volcanic forcing were nonsignificant predictors and contributed weakly to observed trends. Anthropogenic forcing was a significant predictor of, and the leading contributor to, long-term warming; natural factors alone fail to explain the observed warming. Conversely, poor model skill for seasonal precipitation suggests that other factors need to be considered to understand the sources of seasonal precipitation trends.

Corresponding author address: Dr. John T. Abatzoglou, Department of Geography, 875 Perimeter Dr., MS 3021, Moscow, ID 83844-3021. E-mail: jabatzoglou@uidaho.edu
Save
  • Abatzoglou, J. T., 2011: Influence of the PNA on declining mountain snowpack in the Western United States. Int. J. Climatol., 31, 1135–1142, doi:10.1002/joc.2137.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., and K. T. Redmond, 2007: Asymmetry between trends in spring and autumn temperature and circulation regimes over western North America. Geophys. Res. Lett., 34, L18808, doi:10.1029/2007GL030891.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. P., and Coauthors, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. S. Stocker et al., Eds., Cambridge University Press, 1–27. [Available online at http://www.ipcc.ch/.]

  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Food and Agricultural Organization of the United Nations, Rome, Italy, 300 pp. [Available online at http://www.fao.org/docrep/x0490e/x0490e00.htm.]

  • Betts, A. K., 2011: Vermont climate change indicators. Wea. Climate Soc., 3, 106115.

  • Broccoli, A. J., N.-C. Lau, and M. J. Nath, 1998: The cold ocean–warm land pattern: Model simulation and relevance to climate change detection. J. Climate, 11, 27432763.

    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and Coauthors, 2008: Detection and attribution of temperature changes in the mountainous western United States. J. Climate, 21, 64046424.

    • Search Google Scholar
    • Export Citation
  • Bumbaco, K. A., K. D. Dello, and N. A. Bond, 2013: History of Pacific Northwest heat waves: Synoptic patterns and trends. J. Appl. Meteor. Climatol., 52, 1618–1631.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., J. C. Furtado, M. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Asymmetric seasonal temperature trends. Geophys. Res. Lett., 39, L04705, doi:10.1029/2011GL050582.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., W. Kessomkiat, J. Abatzoglou, and S. A. Mauget, 2011: The identification of distinct patterns in California temperature trends. Climatic Change, 108, 357382.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Daly, C., M. D. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. A. Pasteris, 2008: Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 2031–2064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Daly, C., M. P. Widrlechner, M. D. Halbleib, J. I. Smith, and W. P. Gibson, 2012: Development of a new USDA Plant Hardiness Zone Map for the United States. J. Appl. Meteor. Climatol., 51, 242264.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Search Google Scholar
    • Export Citation
  • Dobrowski, S. Z., J. Abatzoglou, A. K. Swanson, A. Mynsberge, J. A. Greenberg, Z. Holden, and M. K. Schwartz, 2013: The climate velocity of the contiguous United States during the 20th century. Global Change Biol., 19, 241–251, doi:10.1111/gcb.12026.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    • Search Google Scholar
    • Export Citation
  • Foster, G., and S. Rahmstorf, 2011: Global temperature evolution 1979–2010. Environ. Res. Lett., 6, 044022, doi:10.1088/1748-9326/6/4/044022.

    • Search Google Scholar
    • Export Citation
  • Frohlich, C., 2012: Total solar irradiance observations. Surv. Geophys., 33, 453473.

  • Groisman, P. Y., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2007: Climate simulations for 1880–2003 with GISS modelE. Climate Dyn., 29, 661696, doi:10.1007/s00382-007-0255-8.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2013: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol.,doi:10.1002/joc.3711, in press.

  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, doi:10.1007/s00382-010-0810-6.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, and J. Perlwitz, 2010: Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Climate, 23, 21312145.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. E., R. D. Burman, and R. G. Allen, Eds., 1990: Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practices, No. 70, American Society for Civil Engineers, 360 pp.

  • Karl, T. R., G. Kukla, V. N. Razuvayev, M. J. Changery, R. G. Quayle, R. R. Heim Jr., D. R. Easterling, and C. B. Fu, 1991: Global warming—Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett., 18, 22532256.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Lean, J. L., and D. H. Rind, 2008: How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett., 35, L18701, doi:10.1029/2008GL034864.

    • Search Google Scholar
    • Export Citation
  • Lean, J. L., and D. H. Rind, 2009: How will Earth’s surface temperature change in future decades? Geophys. Res. Lett., 36, L15708, doi:10.1029/2009GL038932.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., R. M. Dole, C. Jones, I. Bladé, and D. Allured, 2010: Influence of choice of time period on global surface temperature trend estimates. Bull. Amer. Meteor. Soc., 91, 14851491.

    • Search Google Scholar
    • Export Citation
  • McRoberts, D. B., and J. W. Nielsen-Gammon, 2011: A new homogenized climate division precipitation dataset for analysis of climate variability and climate change. J. Appl. Meteor. Climatol., 50, 11871199.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change, 109, 213–241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2009: The U.S. Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931007.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2003: Trends in temperature and precipitation in the Pacific Northwest. Northwest Sci., 77, 271282.

  • Mote, P. W., and E. P. Salathé Jr., 2010: Future climate in the Pacific Northwest. Climatic Change, 102, 29–50, doi:10.1007/s10584-010-9848-z.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate,20, 2333–2356.

  • Pederson, G. T., L. J. Graumlich, D. B. Fagre, T. Kipfer, and C. Muhlfield, 2010: A century of climate and ecosystem change in Western Montana: What do recent temperature trends portend? A view from western Montana, USA. Climatic Change, 98, 133154, doi:10.1007/s10584-009-9642-y.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2008: Attribution of declining western U.S. snowpack to human effects. J. Climate, 21, 64256444.

  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., J. T. Abatzoglou, K. C. Hegewisch, and P. W. Mote, 2013: Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos., 118, 10 884–10 906, doi:10.1002/jgrd.50843.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105 (D6), 73377356.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, doi:10.1029/2012GL052759.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone, X. Zhang, and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. Wiley Interdiscip. Rev.: Climate Change, 1, 192211, doi:10.1002/wcc.34.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 61206141.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Vose, R. S., D. R. Easterling, and B. Gleason, 2005: Maximum and minimum temperature trend for the globe: An update through 2004. Geophys. Res. Lett.,32, L23822, doi:10.1029/2005GL024379.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and J. A. Renwick, 1995: Dynamic contribution to hemispheric mean temperature trends. Science, 270, 780783.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Q. Fu, B. V. Smoliak, P. Lin, and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc. Natl. Acad. Sci. USA, 109, 14 33714 342.

    • Search Google Scholar
    • Export Citation
  • Wang, H., S. Schubert, M. Suarez, J. Chen, M. Hoerling, A. Kumar, and P. Pegion, 2009: Attribution of the seasonality and regionality in climate trends over the United States during 1950–2000. J. Climate, 22, 25712590.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-M., J. L. Lean, and N. R. Sheeley Jr., 2005: Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J., 625, 522538.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., C. M. Rowe, and Y. Mintz, 1985: Climatology of the terrestrial seasonal water cycle. J. Climatol., 5, 589606.

  • Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, doi:10.1002/joc.2336.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461–465, doi:10.1038/nature06025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5642 2461 184
PDF Downloads 2418 473 64