Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis

Fabien Maussion Chair of Climatology, Technische Universität Berlin, Berlin, Germany

Search for other papers by Fabien Maussion in
Current site
Google Scholar
PubMed
Close
,
Dieter Scherer Chair of Climatology, Technische Universität Berlin, Berlin, Germany

Search for other papers by Dieter Scherer in
Current site
Google Scholar
PubMed
Close
,
Thomas Mölg Chair of Climatology, Technische Universität Berlin, Berlin, Germany

Search for other papers by Thomas Mölg in
Current site
Google Scholar
PubMed
Close
,
Emily Collier Chair of Climatology, Technische Universität Berlin, Berlin, Germany

Search for other papers by Emily Collier in
Current site
Google Scholar
PubMed
Close
,
Julia Curio Chair of Climatology, Technische Universität Berlin, Berlin, Germany

Search for other papers by Julia Curio in
Current site
Google Scholar
PubMed
Close
, and
Roman Finkelnburg Chair of Climatology, Technische Universität Berlin, Berlin, Germany

Search for other papers by Roman Finkelnburg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Because of the scarcity of meteorological observations, the precipitation climate on the Tibetan Plateau and surrounding regions (TP) has been insufficiently documented so far. In this study, the characteristics and basic features of precipitation on the TP during an 11-yr period (2001–11) are described on monthly-to-annual time scales. For this purpose, a new high-resolution atmospheric dataset is analyzed, the High Asia Reanalysis (HAR), generated by dynamical downscaling of global analysis data using the Weather Research and Forecasting (WRF) model. The HAR precipitation data at 30- and 10-km resolutions are compared with both rain gauge observations and satellite-based precipitation estimates from the Tropical Rainfall Measurement Mission (TRMM). It is found that the HAR reproduces previously reported spatial patterns and seasonality of precipitation and that the high-resolution data add value regarding snowfall retrieval, precipitation frequency, and orographic precipitation. It is demonstrated that this process-based approach, despite some unavoidable shortcomings, can improve the understanding of the processes that lead to precipitation on the TP. Analysis focuses on precipitation amounts, type, seasonality, and interannual variability. Special attention is given to the links between the observed patterns and regional atmospheric circulation. As an example of an application of the HAR, a new classification of glaciers on the TP according to their accumulation regimes is proposed, which illustrates the strong spatial variability of precipitation seasonality. Finally, directions for future research are identified based on the HAR, which has the potential to be a useful dataset for climate, glaciological, and hydrological impact studies.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00282.s1.

Additional affiliation: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada.

Corresponding author address: Fabien Maussion, Technische Universität Berlin, Chair of Climatology, Rothenburgstr. 12, 12165 Berlin, Germany. E-mail: fabien.maussion@tu-berlin.de

Abstract

Because of the scarcity of meteorological observations, the precipitation climate on the Tibetan Plateau and surrounding regions (TP) has been insufficiently documented so far. In this study, the characteristics and basic features of precipitation on the TP during an 11-yr period (2001–11) are described on monthly-to-annual time scales. For this purpose, a new high-resolution atmospheric dataset is analyzed, the High Asia Reanalysis (HAR), generated by dynamical downscaling of global analysis data using the Weather Research and Forecasting (WRF) model. The HAR precipitation data at 30- and 10-km resolutions are compared with both rain gauge observations and satellite-based precipitation estimates from the Tropical Rainfall Measurement Mission (TRMM). It is found that the HAR reproduces previously reported spatial patterns and seasonality of precipitation and that the high-resolution data add value regarding snowfall retrieval, precipitation frequency, and orographic precipitation. It is demonstrated that this process-based approach, despite some unavoidable shortcomings, can improve the understanding of the processes that lead to precipitation on the TP. Analysis focuses on precipitation amounts, type, seasonality, and interannual variability. Special attention is given to the links between the observed patterns and regional atmospheric circulation. As an example of an application of the HAR, a new classification of glaciers on the TP according to their accumulation regimes is proposed, which illustrates the strong spatial variability of precipitation seasonality. Finally, directions for future research are identified based on the HAR, which has the potential to be a useful dataset for climate, glaciological, and hydrological impact studies.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00282.s1.

Additional affiliation: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada.

Corresponding author address: Fabien Maussion, Technische Universität Berlin, Chair of Climatology, Rothenburgstr. 12, 12165 Berlin, Germany. E-mail: fabien.maussion@tu-berlin.de

Supplementary Materials

    • Supplemental Materials (PDF 3.83 MB)
Save
  • Arendt, A., and Coauthors, 2012: Randolph glacier inventory [v1.0]: A dataset of global glacier outlines. Global Land Ice Measurements from Space Rep., 28 pp.

  • Bohner, J., 2006: General climatic controls and topoclimatic variations in Central and High Asia. Boreas, 35, 279295, doi:10.1111/j.1502-3885.2006.tb01158.x.

    • Search Google Scholar
    • Export Citation
  • Bolch, T., and Coauthors, 2012: The state and fate of Himalayan glaciers. Science, 336, 310314, doi:10.1126/science.1215828.

  • Bookhagen, B., and M. R. Strecker, 2008: Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys. Res. Lett.,35, L06403, doi:10.1029/2007GL032011.

  • Bookhagen, B., and D. W. Burbank, 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res.,115, F03019, doi:10.1029/2009JF001426.

  • Box, J. E., and Coauthors, 2006: Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. J. Climate, 19, 27832800.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., L. H. Bai, and G. G. Bjarnason, 2005: High-resolution regional climate simulations over Iceland using Polar MM5. Mon. Wea. Rev., 133, 35273547.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., H.-N. S. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95 (3–4), 499521, doi:10.1007/s10584-009-9583-5.

    • Search Google Scholar
    • Export Citation
  • Chen, B., X.-D. Xu, S. Yang, and W. Zhang, 2012: On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol., 54, doi:10.1007/s00704-012-0641-y.

    • Search Google Scholar
    • Export Citation
  • Chow, K. C., and J. C. L. Chan, 2009: Diurnal variations of circulation and precipitation in the vicinity of the Tibetan Plateau in early summer. Climate Dyn., 32, 5573, doi:10.1007/s00382-008-0374-x.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2008: Two-dimensional idealized simulations of the impact of multiple windward ridges on orographic precipitation. J. Atmos. Sci., 65, 509523.

    • Search Google Scholar
    • Export Citation
  • Collier, E., T. Mölg, F. Maussion, D. Scherer, C. Mayer, and A. B. G. Bush, 2013: High-resolution interactive modelling of the mountain glacier–atmosphere interface: An application over the Karakoram. Cryosphere, 7, 779795, cp-10-91-2014/tc-7-779-2013.

    • Search Google Scholar
    • Export Citation
  • Conrad, V., 1941: The variability of precipitation. Mon. Wea. Rev., 69, 511.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc.,137, 553–597, doi:10.1002/qj.828.

  • Dietze, E., and Coauthors, 2014: Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end-members in lake sediments. Climate Past, 10, 91106, doi:10.5194/cp-10-91-2014.

    • Search Google Scholar
    • Export Citation
  • Feng, L., and T. J. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res.,117, D20114, doi:10.1029/2011JD017012.

  • Fu, Y., G. Liu, G. Wu, R. Yu, Y. Xu, Y. Wang, R. Li, and Q. Liu, 2006: Tower mast of precipitation over the central Tibetan Plateau summer. Geophys. Res. Lett.,33, L05802, doi:10.1029/2005GL024713.

  • Fujita, K., 2008: Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet. Sci. Lett., 276 (1–2), 1419, doi:10.1016/j.epsl.2008.08.028.

    • Search Google Scholar
    • Export Citation
  • Hahn, D., and S. Manabe, 1975: Role of mountains in South Asian monsoon circulation. J. Atmos. Sci., 32, 15151541.

  • Heikkila, U., A. Sandvik, and A. Sorteberg, 2011: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37 (7–8), 15511564, doi:10.1007/s00382-010-0928-6.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc.,in press.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., and M. F. P. Bierkens, 2010: Seasonal prediction of monsoon rainfall in three Asian river basins: The importance of snow cover on the Tibetan Plateau. Int. J. Climatol., 30, 18351842, doi:10.1002/joc.2033.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301316, doi:10.1034/j.1600-0870.2003.00025.x.

  • Jurković, R. S., and Z. Pasarić, 2013: Spatial variability of annual precipitation using globally gridded data sets from 1951 to 2000. Int. J. Climatol., 33, 690698, doi:10.1002/joc.3462.

    • Search Google Scholar
    • Export Citation
  • Kääb, A., E. Berthier, C. Nuth, J. Gardelle, and Y. Arnaud, 2012: Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488, 495498, doi:10.1038/nature11324.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and H. Kanamaru, 2007: Fifty-seven-year California Reanalysis Downscaling at 10 km (CaRD10). Part I: System detail and validation with observations. J. Climate, 20, 55535571.

    • Search Google Scholar
    • Export Citation
  • Kansakar, S., D. M. Hannah, J. Gerrard, and G. Rees, 2004: Spatial pattern in the precipitation regime of Nepal. Int. J. Climatol., 24, 16451659, doi:10.1002/joc.1098.

    • Search Google Scholar
    • Export Citation
  • Kaser, G., M. Grosshauser, and B. Marzeion, 2010: Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA, 107, 20 22320 227, doi:10.1073/pnas.1008162107.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, doi:10.5194/hess-15-1109-2011.

    • Search Google Scholar
    • Export Citation
  • Kropáček, J., F. Maussion, F. Chen, S. Hoerz, and V. Hochschild, 2013: Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere, 7, 287301, doi:10.5194/tc-7-287-2013.

    • Search Google Scholar
    • Export Citation
  • Kumar, M. S., M. S. Shekhar, S. S. V. S. R. Krishna, M. R. Bhutiyani, and A. Ganju, 2012: Numerical simulation of cloud burst event on August 05, 2010, over Leh using WRF mesoscale model. Nat. Hazards, 62, 12611271, doi:10.1007/s11069-012-0145-1.

    • Search Google Scholar
    • Export Citation
  • Liu, X., A. Bai, and C. Liu, 2009: Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations. Environ. Res. Lett.,4, 045203, doi:10.1088/1748-9326/4/4/045203.

  • Lo, J. C.-F., Z.-L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res.,113, D09112, doi:10.1029/2007JD009216.

  • Maussion, F., D. Scherer, R. Finkelnburg, J. Richters, W. Yang, and T. Yao, 2011: WRF simulation of a precipitation event over the Tibetan Plateau, China—An assessment using remote sensing and ground observations. Hydrol. Earth Syst. Sci., 15, 17951817, doi:10.5194/hess-15-1795-2011.

    • Search Google Scholar
    • Export Citation
  • Medina, S., R. A. Houze Jr., A. Kumar, and D. Niyogi, 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136, 593616, doi:10.1002/qj.601.

    • Search Google Scholar
    • Export Citation
  • Mölg, T., and G. Kaser, 2011: A new approach to resolving climate-cryosphere relations: Downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. J. Geophys. Res.,116, D16101, doi:10.1029/2011JD015669.

  • Mölg, T., and D. Scherer, 2012: Retrieving important mass-balance model parameters from AWS measurements and high-resolution mesoscale atmospheric modeling. J. Glaciol., 58, 625628, doi:10.3189/2012JoG11J258.

    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, W. Yang, and D. Scherer, 2012: The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere, 6, 14451461, doi:10.5194/tc-6-1445-2012.

    • Search Google Scholar
    • Export Citation
  • Mölg, T., F. Maussion, and D. Scherer, 2014: Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Climate Change, 4, 6873, doi:10.1038/nclimate2055.

    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci.,38, 77–102, doi:10.1146/annurev-earth-040809-152456.

  • National Centers for Environmental Prediction, cited 2014: NCEP ADP global upper air and surface weather observations (PREPBUFR format), May 1997—Continuing. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive. [Available online at http://rda.ucar.edu/datasets/ds337.0.]

  • Palazzi, E., J. von Hardenberg, and A. Provenzale, 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, doi:10.1029/2012JD018697.

    • Search Google Scholar
    • Export Citation
  • Qian, W., and D.-K. Lee, 2000: Seasonal march of Asian summer monsoon. Int. J. Climatol., 20, 13711386, doi:10.1002/1097-0088(200009)20:11<1371::AID-JOC538>3.0.CO;2-V.

    • Search Google Scholar
    • Export Citation
  • Qin, J., K. Yang, S. Liang, and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97 (1–2), 321327, doi:10.1007/s10584-009-9733-9.

    • Search Google Scholar
    • Export Citation
  • Rupper, S., and G. Roe, 2008: Glacier changes and regional climate: A mass and energy balance approach. J. Climate, 21, 53845401.

  • Rüthrich, F., B. Thies, C. Reudenbach, and J. Bendix, 2013: Cloud detection and analysis on the Tibetan Plateau using Meteosat and CloudSat. J. Geophys. Res. Atmos.,118, 10 082–10 099, doi:10.1002/jgrd.50790.

  • Schiemann, R., D. Luethi, P. L. Vidale, and C. Schaer, 2008: The precipitation climate of central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol., 28, 295314, doi:10.1002/joc.1532.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Luethi, and C. Schaer, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957.

    • Search Google Scholar
    • Export Citation
  • Shi, Y., 2002: Characteristics of late quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quat. Int.,97–98, 79–91, doi:10.1016/S1040-6182(02)00053-8.

  • Shi, Y., and S. Liu, 2000: Estimation on the response of glaciers in china to the global warming in the 21st century. Chin. Sci. Bull., 45, 668672.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Ueno, 2010: Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts. J. Geophys. Res.,115, D16105, doi:10.1029/2009JD013609.

  • Ueno, K., H. Fujii, H. Yamada, and L. P. Liu, 2001: Weak and frequent monsoon precipitation over the Tibetan Plateau. J. Meteor. Soc. Japan, 79, 419434, doi:10.2151/jmsj.79.419.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Springer-Praxis, 787 pp.

  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 (C7), 14 45114 510.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. E. Toma, and H. M. Kim, 2011: Were the 2010 Pakistan floods predictable? Geophys. Res. Lett.,38, L04806, doi:10.1029/2010GL046346.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wilson, A. B., D. H. Bromwich, and K. M. Hines, 2011: Evaluation of polar WRF forecasts on the arctic system reanalysis domain: Surface and upper air analysis. J. Geophys. Res.,116, D11112, doi:10.1029/2010JD015013.

  • Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

    • Search Google Scholar
    • Export Citation
  • Yang, W., X. Guo, T. Yao, K. Yang, L. Zhao, S. Li, and M. Zhu, 2011: Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. J. Geophys. Res.,116, D14116, doi:10.1029/2010JD015183.

  • Yang, W., T. Yao, X. Guo, M. Zhu, S. Li, and D. B. Kattel, 2013: Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res. Atmos.,118, 9579–9594, doi:10.1002/jgrd.50760.

  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663–667, doi:10.1038/nclimate1580.

    • Search Google Scholar
    • Export Citation
  • Yaodong, L., W. Yun, S. Yang, H. Liang, G. Shouting, and R. Fu, 2008: Characteristics of summer convective systems initiated over the Tibetan Plateau. Part I: Origin, track, development, and precipitation. J. Appl. Meteor. Climatol., 47, 26792695.

    • Search Google Scholar
    • Export Citation
  • Yin, Z.-Y., X. Zhang, X. Liu, M. Colella, and X. Chen, 2008: An assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis. J. Hydrometeor., 9, 301326.

    • Search Google Scholar
    • Export Citation
  • You, Q., K. Fraedrich, G. Ren, B. Ye, X. Meng, and S. Kang, 2012: Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theor. Appl. Climatol., 109 (3–4), 485496, doi:10.1007/s00704-012-0594-1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Chen, A. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 39974010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5956 1431 93
PDF Downloads 4548 684 57