A Lagrangian Analysis of Deep Convective Systems and Their Local Environmental Effects

David I. Duncan Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David I. Duncan in
Current site
Google Scholar
PubMed
Close
,
Christian D. Kummerow Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
, and
Gregory S. Elsaesser Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Gregory S. Elsaesser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Life cycles of deep convective raining systems are documented through use of a Lagrangian tracking algorithm applied to high-resolution Climate Prediction Center morphing technique (CMORPH) rainfall data, permitting collocation with related environmental ancillary fields and the International Satellite Cloud Climatology Project (ISCCP) cloud states (Rossow et al. 2005). System life cycles are described in terms of propagation speed, duration, and dominant cloud structures. Tracked systems are usually associated with the ISCCP weather state 1 (WS1) deep convection cloud state and an independent, microwave-based deep convective precipitation regime developed here. The distribution and characteristics of tracked systems are found to be similar between ocean basins in terms of system speed and duration, with westward-propagating systems predominant in every basin.

The effects that these systems have on environmental parameters are assessed, stratified according to their average propagation speed and by ocean basin. Regardless of system speed the net effect on the environment is similar, with the largest difference being how quickly changes occur, with net surface radiation decreasing about 150 W m−2 and total precipitable water perturbed by 5–7 kg m−2; sea surface temperature (SST) drops 0.2°–0.3°C over 24 h, with system speed affecting how long SSTs remain depressed. The observed drop in SST is partly caused by the presence of widespread, optically thick clouds that greatly decrease the net surface radiative flux. Quick changes in SSTs caused by tracked systems are captured by buoys but not represented well in gridded SST products, as these regions remain largely under the precipitating cloud cover associated with these systems.

Corresponding author address: David Duncan, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: dduncan@atmos.colostate.edu

Abstract

Life cycles of deep convective raining systems are documented through use of a Lagrangian tracking algorithm applied to high-resolution Climate Prediction Center morphing technique (CMORPH) rainfall data, permitting collocation with related environmental ancillary fields and the International Satellite Cloud Climatology Project (ISCCP) cloud states (Rossow et al. 2005). System life cycles are described in terms of propagation speed, duration, and dominant cloud structures. Tracked systems are usually associated with the ISCCP weather state 1 (WS1) deep convection cloud state and an independent, microwave-based deep convective precipitation regime developed here. The distribution and characteristics of tracked systems are found to be similar between ocean basins in terms of system speed and duration, with westward-propagating systems predominant in every basin.

The effects that these systems have on environmental parameters are assessed, stratified according to their average propagation speed and by ocean basin. Regardless of system speed the net effect on the environment is similar, with the largest difference being how quickly changes occur, with net surface radiation decreasing about 150 W m−2 and total precipitable water perturbed by 5–7 kg m−2; sea surface temperature (SST) drops 0.2°–0.3°C over 24 h, with system speed affecting how long SSTs remain depressed. The observed drop in SST is partly caused by the presence of widespread, optically thick clouds that greatly decrease the net surface radiative flux. Quick changes in SSTs caused by tracked systems are captured by buoys but not represented well in gridded SST products, as these regions remain largely under the precipitating cloud cover associated with these systems.

Corresponding author address: David Duncan, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: dduncan@atmos.colostate.edu
Save
  • Anderberg, M. R., 1973: Cluster Analysis for Applications.Academic Press, 359 pp.

  • Anderson, S. P., R. A. Weller, and R. B. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: Observations and 1D model results. J. Climate, 9, 30563085.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., P. Lopez, D. Salmond, A. Benedetti, S. Saarinen, and M. Bonazzola, 2006: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. II: 4D-Var. Quart. J. Roy. Meteor. Soc., 132, 23072332.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and F. J. Wentz, 2005: Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Amer. Meteor. Soc., 86, 10971115.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dias, J., S. Tulich, and G. Kiladis, 2012: An object-based approach to assessing tropical convection organization. J. Atmos. Sci., 69, 24882504.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., and C. D. Kummerow, 2008: Toward a fully parametric retrieval of the nonraining parameters over the global oceans. J. Appl. Meteor. Climatol., 47, 15991618.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., C. D. Kummerow, T. S. L’Ecuyer, Y. N. Takayabu, and S. Shige, 2010: Observed self-similarity of precipitation regimes over the tropical oceans. J. Climate, 23, 26862698.

    • Search Google Scholar
    • Export Citation
  • Freitag, H. P., M. E. McCarty, C. Nosse, R. Lukas, M. J. McPhaden, and M. F. Cronin, 1999: COARE Seacat data: Calibrations and quality control procedures. NOAA Tech. Memo. ERL PMEL-115, 89 pp. [Available online at http://www.pmel.noaa.gov/pubs/PDF/frei2034/frei2034.pdf.]

  • Godfrey, J. S., and E. J. Lindstrom, 1989: The heat budget of the equatorial western Pacific surface mixed layer. J. Geophys. Res., 94 (C6), 80078017.

    • Search Google Scholar
    • Export Citation
  • Gosnell, R., C. Fairall, and P. J. Webster, 1995: The sensible heat of rainfall in the tropical ocean. J. Geophys. Res., 100 (C9), 18 43718 442.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and C. Schumacher, 2008: Precipitation and latent heating characteristic of the major tropical western Pacific cloud regimes. J. Climate, 21, 43484364.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., and K. J. K. Buettner, 1969: Influence of rainfall on temperature and salinity of the ocean surface. J. Appl. Meteor., 8, 1518.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and A. Wada, 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696.

  • Kummerow, C. D., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130.

    • Search Google Scholar
    • Export Citation
  • Lee, D., L. Oreopoulos, G. J. Huffman, W. B. Rossow, and I.-S. Kang, 2013: The precipitation characteristics of ISCCP tropical weather states. J. Climate, 26, 772788.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. J. Atmos. Sci., 69, 29832994.

  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., R. Milliff, and J. Morzel, 2009: Composite life cycle of maritime tropical mesoscale convective systems in scatterometer and microwave satellite observations. J. Atmos. Sci., 66, 199208.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2012: A satellite study of the atmospheric forcing and response to moist convection over tropical and subtropical oceans. J. Atmos. Sci., 69, 150167.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. D. Kummerow, 2006: Observations of tropical precipitating clouds ranging from shallow to deep convective systems. Geophys. Res. Lett., 33, L16805, doi:10.1029/2006GL026547.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2010: The global tropical moored buoy array. Proceedings of OceanObs '09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306. [Available online at http://www.pmel.noaa.gov/tao/proj_over/pubs/McPhaden_Oceanobs09.pdf.]

  • Mitovski, T., I. Folkins, K. von Salzen, and M. Sigmond, 2010: Temperature, relative humidity, and divergence response to high rainfall events in the tropics: Observations and models. J. Climate, 23, 36133625.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the ice scattering signature. J. Appl. Meteor., 38, 596606.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Richards, K. J., M. E. Inall, and N. C. Wells, 1995: The diurnal mixed layer and the upper ocean heat budget in the western equatorial Pacific. J. Geophys. Res., 100 (C4), 68656879.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. Mekonnen, C. Pearl, and W. Goncalves, 2013: Tropical precipitation extremes. J. Climate, 26, 14571466.

  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166.

    • Search Google Scholar
    • Export Citation
  • Skok, G., J. Tribbia, J. Rakovec, and B. Brown, 2009: Object-based analysis of satellite-derived precipitation systems over the low- and midlatitude Pacific Ocean. Mon. Wea. Rev., 137, 31963218.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., S. K. Gupta, S. J. Cox, J. C. Mikovitz, T. Zhang, and L. M. Hinkelman, 2011: 24.5-year SRB dataset released. GEWEX News, No. 21 (1), International GEWEX Project Office, Silver Spring, MD, 10–12. [Available online at http://www.gewex.org/images/Feb2011.pdf.]

  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Tan, J., C. Jakob, and T. P. Lane, 2013: On the identification of the large-scale properties of tropical convection using cloud regimes. J. Climate, 26, 66186632.

    • Search Google Scholar
    • Export Citation
  • Tulich, S., and G. Kiladis, 2012: Squall lines and convectively coupled gravity waves in the tropics: Why do most cloud systems propagate westward? J. Atmos. Sci., 69, 29953012.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Williams, M., and R. A. Houze Jr., 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505519.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate, 23, 58645888.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1677 1226 41
PDF Downloads 184 30 2