Modeling Obliquity and CO2 Effects on Southern Hemisphere Climate during the Past 408 ka

Axel Timmermann IPRC, SOEST, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Axel Timmermann in
Current site
Google Scholar
PubMed
Close
,
Tobias Friedrich IPRC, SOEST, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Tobias Friedrich in
Current site
Google Scholar
PubMed
Close
,
Oliver Elison Timm IPRC, SOEST, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Oliver Elison Timm in
Current site
Google Scholar
PubMed
Close
,
Megumi O. Chikamoto IPRC, SOEST, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Megumi O. Chikamoto in
Current site
Google Scholar
PubMed
Close
,
Ayako Abe-Ouchi Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa Chiba, and RIGC/JAMSTEC, Yokohama Institute for Earth Sciences, Yokohama, Japan

Search for other papers by Ayako Abe-Ouchi in
Current site
Google Scholar
PubMed
Close
, and
Andrey Ganopolski Potsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Andrey Ganopolski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The effect of obliquity and CO2 changes on Southern Hemispheric climate is studied with a series of numerical modeling experiments. Using the Earth system model of intermediate complexity Loch–VECODE–ECBilt–CLIO–Agism Model (LOVECLIM) and a coupled general circulation model [Model for Interdisciplinary Research on Climate (MIROC)], it is shown in time-slice simulations that phases of low obliquity enhance the meridional extratropical temperature gradient, increase the atmospheric baroclinicity, and intensify the lower and middle troposphere Southern Hemisphere westerlies and storm tracks. Furthermore, a transient model simulation is conducted with LOVECLIM that covers the greenhouse gas, ice sheet, and orbital forcing history of the past 408 ka. This simulation reproduces reconstructed glacial–interglacial variations in temperature and sea ice qualitatively well and shows that the meridional heat transport associated with the orbitally paced modulation of middle troposphere westerlies and storm tracks partly offsets the effects of the direct shortwave obliquity forcing over Antarctica, thereby reinforcing the high correlation between CO2 radiative forcing and Antarctic temperature. The overall timing of temperature changes in Antarctica is hence determined by a balance of shortwave obliquity forcing, atmospheric heat transport changes, and greenhouse gas forcing. A shorter 130-ka transient model experiment with constant CO2 concentrations further demonstrates that surface Southern Hemisphere westerlies are primarily modulated by the obliquity cycle rather than by the CO2 radiative forcing.

Denotes Open Access content.

International Pacific Research Center Publication Number 1025 and School of Ocean and Earth Science and Technology Contribution Number 9037.

Corresponding author address: Axel Timmermann, IPRC, SOEST, University of Hawai’i at Mānoa, 2525 Correa Road, Honolulu, HI 96822. E-mail: axel@hawaii.edu

Abstract

The effect of obliquity and CO2 changes on Southern Hemispheric climate is studied with a series of numerical modeling experiments. Using the Earth system model of intermediate complexity Loch–VECODE–ECBilt–CLIO–Agism Model (LOVECLIM) and a coupled general circulation model [Model for Interdisciplinary Research on Climate (MIROC)], it is shown in time-slice simulations that phases of low obliquity enhance the meridional extratropical temperature gradient, increase the atmospheric baroclinicity, and intensify the lower and middle troposphere Southern Hemisphere westerlies and storm tracks. Furthermore, a transient model simulation is conducted with LOVECLIM that covers the greenhouse gas, ice sheet, and orbital forcing history of the past 408 ka. This simulation reproduces reconstructed glacial–interglacial variations in temperature and sea ice qualitatively well and shows that the meridional heat transport associated with the orbitally paced modulation of middle troposphere westerlies and storm tracks partly offsets the effects of the direct shortwave obliquity forcing over Antarctica, thereby reinforcing the high correlation between CO2 radiative forcing and Antarctic temperature. The overall timing of temperature changes in Antarctica is hence determined by a balance of shortwave obliquity forcing, atmospheric heat transport changes, and greenhouse gas forcing. A shorter 130-ka transient model experiment with constant CO2 concentrations further demonstrates that surface Southern Hemisphere westerlies are primarily modulated by the obliquity cycle rather than by the CO2 radiative forcing.

Denotes Open Access content.

International Pacific Research Center Publication Number 1025 and School of Ocean and Earth Science and Technology Contribution Number 9037.

Corresponding author address: Axel Timmermann, IPRC, SOEST, University of Hawai’i at Mānoa, 2525 Correa Road, Honolulu, HI 96822. E-mail: axel@hawaii.edu
Save
  • Anderson, R., S. Ali, L. I. Bradtmiller, S. H. H . Nielsen, M. Q. Fleisher, B. E. Anderson, and L. H. Burckle, 2009: Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 323, 14431448.

    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long-term variations of daily insolation and quaternary climate change. J. Atmos. Sci., 35, 23622367.

  • Berger, A., M. Loutre, and H. Gallée, 1998: Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 ky. Climate Dyn., 14, 615629.

    • Search Google Scholar
    • Export Citation
  • Berger, A., X. Li, and M. Loutre, 1999: Modelling Northern Hemisphere ice volume over the last 3 Ma. Quat. Sci. Rev., 18, 111.

  • Brayshaw, D., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., A. Ganapolski, and Y. Svirezhev, 1997: A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol. Modell., 101, 251261.

    • Search Google Scholar
    • Export Citation
  • Campin, J., and H. Goosse, 1999: A parameterization of dense overflow in large-scale ocean models in z coordinate. Tellus, 51A, 412430.

    • Search Google Scholar
    • Export Citation
  • Chavaillaz, Y., F. Codron, and M. Kageyama, 2012: Southern westerlies in LGM and future (RCP4.5) climates. Climate Past, 9, 517524.

  • Chen, G.-S., Z. Liu, S. C. Clemens, W. L. Prell, and X. Liu, 2011: Modeling the time-dependent response of the Asian summer monsoon to obliquity forcing in a coupled GCM: A PHASEMAP sensitivity experiment. Climate Dyn., 36, 695–710, doi:10.1007/s00382-010-0740-3.

    • Search Google Scholar
    • Export Citation
  • Denton, G. H., R. F. Anderson, J. R. Toggweiler, R. L. Edwards, J. M. Schaefer, and A. E. Putnam, 2010: The last glacial termination. Science, 328, 16521656.

    • Search Google Scholar
    • Export Citation
  • Friedrich, T., A. Timmermann, L. Menviel, O. Elison Timm, A. Mouchet, and D. M. Roche, 2010: The mechanism behind internally generated centennial-to-millennial scale climate variability in an Earth system model of intermediate complexity. Geosci. Model Dev., 3, 377389, doi:10.5194/gmd-3-377-2010.

    • Search Google Scholar
    • Export Citation
  • Gallée, H., J. P. van Ypersele, T. Fichefet, I. Marsiat, C. Tricot, and A. Berger, 1992: Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model: 2. Response to insolation and CO2 variations. J. Geophys. Res., 97 (D14), 15 71315 740.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and C. Roche, 2009: On the nature of lead–lag relationships during glacial–interglacial climate transitions. Quat. Sci. Rev., 37/38, 33613378.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and R. Calov, 2011: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Climate Past, 7, 14151425, doi:10.5194/cp-7-1415-2011.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and T. Fichefet, 1999: Importance of ice–ocean interactions for the global ocean circulation: A model study. J. Geophys. Res., 104 (C10), 23 33723 355.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., E. Deleersnijder, T. Fichefet, and M. England, 1999: Sensitivity of a global coupled ocean–sea ice model to the parameterization of vertical mixing. J. Geophys. Res., 104 (C6), 13 68113 695.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and Coauthors, 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci. Model Dev., 3, 603633.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., 1997: CCSR Ocean Component Model (COCO), version 4.0. Tech. Rep. 25, Center for Climate System Research, 103 pp.

  • Hasumi, H., and S. Emori, Eds., 2004: K-1 coupled GCM (MIROC) description. K-1 Tech. Rep. 1. CCSR/NIES/FRCGC, 34 pp.

  • Hodell, D. H., J. E. T. Channell, J. H. Curtis, O. E. Romero, and U. Röhl, 2008: Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (~640 ka)? Paleoceanography, 23, PA4218, doi:10.1029/2008PA001591.

    • Search Google Scholar
    • Export Citation
  • Holden, P. B., N. R. Edwards, E. W. Wolff, N. J. Lang, J. S. Singarayer, P. J. Valdes, and T. F. Stocker, 2010: Interhemispheric coupling, the West Antarctic Ice Sheet and warm Antarctic interglacials. Climate Past, 6, 431443.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., and C. Wunsch, 2005: Obliquity pacing of the late Pleistocene glacial terminations. Nature, 434, 491494, doi:10.1038/nature03401.

    • Search Google Scholar
    • Export Citation
  • Imbrie, J., and J. Z. Imbrie, 1980: Modeling the climatic response to orbital variations. Science, 207, 943953, doi:10.1126/science.207.4434.943.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. S., and A. J. Broccoli, 2003: Orbital forcing of Arctic climate: Mechanisms of climate response and implications for continental glaciation. Climate Dyn., 21, 539557.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 371, 793797.

    • Search Google Scholar
    • Export Citation
  • Kohfeld, K. E., R. M. Graham, A. M. de Boer, L. C. Sime, E. W. Wolff, C. Le Quéré, and L. Bopp, 2013: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis. Quat. Sci. Rev., 68, 7695.

    • Search Google Scholar
    • Export Citation
  • Köhler, P., R. Bintanja, H. Fischer, F. Joos, R. Knutti, G. Lohmann, and V. Masson-Delmotte, 2010: What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat. Sci. Rev., 29, 129145.

    • Search Google Scholar
    • Export Citation
  • Laepple, T., M. Werner, and G. Lohmann, 2011: Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales. Nature, 471, 91–94.

    • Search Google Scholar
    • Export Citation
  • Lamy, F., J. Kaiser, H. Arz, U. Ninnemann, O. Timm, A. Timmermann, and D. Hebbeln, 2007: Modulation of the bipolar seesaw in the southeast Pacific during termination 1. Earth Planet. Sci. Lett., 259, 400413.

    • Search Google Scholar
    • Export Citation
  • Laskar, J., F. Joutel, and P. Robutel, 1993: Stabilization of the earth’s obliquity by the moon. Nature, 361, 615617.

  • Lee, S.-Y., and C. Poulsen, 2005: Tropical Pacific climate response to obliquity forcing in the Pleistocene. Paleoceanography,20, PA4010, doi:10.1029/2005PA001161.

  • Lee, S.-Y., and C. Poulsen, 2008: Amplification of obliquity forcing through mean annual and seasonal atmospheric feedbacks. Climate Past, 4, 205213.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-Y., and C. Poulsen, 2009: Obliquity and precessional forcing of continental snow fall and melt: Implications for orbital forcing of Pleistocene ice ages. Quat. Sci. Rev., 28, 26632674.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-Y., J. Chiang, K. Matsumoto, and K. Tokos, 2011: Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: Modeling perspective and paleoceanographic implications. Paleoceaonography, 26, PA1214, doi:10.1029/2010PA002004.

    • Search Google Scholar
    • Export Citation
  • Loutre, M., D. Paillard, F. Vimeux, and E. Cortijo, 2004: Does mean annual insolation have the potential to change the climate? Earth Planet. Sci. Lett., 221, 114.

    • Search Google Scholar
    • Export Citation
  • Lüthi, D., and Coauthors, 2008: High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379382.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., A. Clement, A. Broccoli, and M. Erb, 2011: Climate feedbacks in response to changes in obliquity. J. Climate, 24, 28302845.

    • Search Google Scholar
    • Export Citation
  • Menviel, L., A. Timmermann, A. Mouchet, and O. Timm, 2008: Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies. Paleoceanography, 23, PA4201, doi:10.1029/2008PA001604.

    • Search Google Scholar
    • Export Citation
  • Oppo, D., R. Fairbanks, A. Gordon, and N. Shackleton, 1990: Late Pleistocene Southern Ocean δ13C variability. Paleoceanography, 5, 4354.

    • Search Google Scholar
    • Export Citation
  • Opsteegh, J., R. Haarsma, F. Selten, and A. Kattenberg, 1998: ECBILT: A dynamic alternative to mixed boundary conditions in ocean models. Tellus, 50A, 348367.

    • Search Google Scholar
    • Export Citation
  • Paillard, D., 2001: Glacial cycles: Toward a new paradigm. Rev. Geophys., 39, 325346.

  • Parrenin, F., and Coauthors, 2013: Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science, 339, 10601063.

    • Search Google Scholar
    • Export Citation
  • Raymo, M., L. Lisiecki, and K. Nisancioglu, 2006: Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science,313, 492–495, doi:10.1126/science.1123296.

  • Ritz, S. P., T. F. Stocker, and F. Joos, 2011: A coupled dynamical ocean–energy balance atmosphere model for paleoclimate studies. J. Climate, 24, 349375.

    • Search Google Scholar
    • Export Citation
  • Roche, D., T. Dokken, H. Goosse, H. Renssen, and S. Weber, 2007: Climate of the Last Glacial Maximum: Sensitivity studies and model–data comparison with the LOVECLIM coupled model. Climate Past, 3, 205224.

    • Search Google Scholar
    • Export Citation
  • Rojas, M., 2013: Sensitivity of Southern Hemisphere circulation to LGM and 4xCO2 climates. Geophys. Res. Lett., 40, 965–970, doi:10.1002/grl.50195.

    • Search Google Scholar
    • Export Citation
  • Rojas, M., and Coauthors, 2009: The southern westerlies during the Last Glacial Maximum in PMIP2 simulations. Climate Dyn., 32, 525548.

    • Search Google Scholar
    • Export Citation
  • Sidall, M., and Coauthors, 2003: Sea-level fluctuations during the last glacial cycle. Nature, 423, 853858.

  • Smith, R., and J. Gregory, 2012: The last glacial cycle: Transient simulations with an AOGCM. Climate Dyn., 38, 15451559.

  • Stenni, B., and Coauthors, 2010: The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quat. Sci. Rev., 29, 146159.

    • Search Google Scholar
    • Export Citation
  • Timm, O., and A. Timmermann, 2007: Simulation of the last 21,000 years using accelerated transient boundary conditions. J. Climate, 20, 43774401.

    • Search Google Scholar
    • Export Citation
  • Timm, O., A. Timmermann, A. Abe-Ouchi, and T. Segawa, 2008: On the definition of paleo-seasons in transient climate simulations. Paleoceanography, 23, PA2221, doi:10.1029/2007PA001461.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. Lorenz, S. I. An, A. Clement, and S.-P. Xie, 2007: The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Climate, 20, 4147–4159.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., O. Timm, and L. Menviel, 2009: The roles of CO2 and orbital forcing in driving Southern Hemispheric temperature variations during the last 21,000 years. J. Climate, 22, 16261640.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., L. Menviel, Y. Okumura, A. Schilla, U. Merkel, A. Hu, B. Otto-Bliesner, and M. Schulz, 2010: Towards a quantitative understanding of millennial-scale Antarctic warming events. Quat. Sci. Rev., 29, 7485.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J., J. Russell, and S. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography,21, PA2005, doi:10.1029/2005PA001154.

  • Uemura, R., V. Masson-Delmotte, J. Jouzel, A. Landais, H. Motoyama, and B. Stenni, 2012: Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles. Climate Past, 8, 11091125, doi:10.5194/cp-8-1109-2012.

    • Search Google Scholar
    • Export Citation
  • Vimeux, F., V. Masson, G. Delaygue, J. Jouzel, J. Petit, and M. Stievenard, 2001: A 420,000 year deuterium excess record from East Antarctica: Information on past changes in the origin of precipitation at Vostok. J. Geophys. Res., 106 (D23), 31 86331 873.

    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C., L. Labeyrie, E. Michel, J. Duplessy, J. McManus, K. Lambeck, E. Balbon, and M. Labracherie, 2002: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev., 21, 295305.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., A. J. Charlton-Perez, and L. J. Gray, 2012: Trends in austral jet position in ensembles of high- and low-top CMIP5 models. J. Geophys. Res., 117, D13115, doi:10.1029/2012JD017597.

    • Search Google Scholar
    • Export Citation
  • Wolff, E., and Coauthors, 2006: Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 440, 491–496, doi:10.1038/nature04614.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2143 1013 101
PDF Downloads 1176 308 27