Objective Identification of the Intertropical Convergence Zone: Climatology and Trends from the ERA-Interim

Gareth Berry Monash Weather and Climate, Monash University, Clayton, Victoria, Australia

Search for other papers by Gareth Berry in
Current site
Google Scholar
PubMed
Close
and
Michael J. Reeder Monash Weather and Climate, and Centre of Excellence for Climate System Science, School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia

Search for other papers by Michael J. Reeder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An objective method for the identification of the intertropical convergence zone (ITCZ) in gridded numerical weather prediction datasets is presented. This technique uses layer- and time-averaged winds in the lower troposphere to automatically detect the location of the ITCZ and is designed for use with datasets including operational forecasts and climate model output. The method is used to create a climatology of ITCZ properties from the Interim ECMWF Re-Analysis (ERA-Interim) dataset for the period 1979–2009 to serve as an indicator of the technique's ability and a benchmark for future comparisons. The automatically generated objective climatology closely matches the results from subjective studies, showing a seasonal cycle in which the oceanic ITCZ migrates meridionally and the land-based ITCZ features are predominantly summertime phenomena. Composites based on the phase of the El Niño–Southern Oscillation index show a major shift in the mean position and changes in intensity of the ITCZ in all ocean basins as the index varies. Under La Niña conditions, the ITCZ intensifies over the Maritime Continent and eastern Pacific, where the ITCZ weakens over the central and equatorial eastern Pacific. An analysis of changes in the ITCZ and its divergence during the period 1979–2009 indicates that the mean position of the ITCZ shifts southward in the western Pacific and a broad global intensification of the convergence into ITCZ regions. The relationship between tropical cyclogenesis and the ITCZ is also examined, finding that more than 50% of all tropical cyclones form within 600 km of the ITCZ.

Corresponding author address: Gareth Berry, Monash Weather and Climate, Monash University, Wellington Road, Clayton, VIC 3800, Australia. E-mail: gareth.berry@monash.edu

Abstract

An objective method for the identification of the intertropical convergence zone (ITCZ) in gridded numerical weather prediction datasets is presented. This technique uses layer- and time-averaged winds in the lower troposphere to automatically detect the location of the ITCZ and is designed for use with datasets including operational forecasts and climate model output. The method is used to create a climatology of ITCZ properties from the Interim ECMWF Re-Analysis (ERA-Interim) dataset for the period 1979–2009 to serve as an indicator of the technique's ability and a benchmark for future comparisons. The automatically generated objective climatology closely matches the results from subjective studies, showing a seasonal cycle in which the oceanic ITCZ migrates meridionally and the land-based ITCZ features are predominantly summertime phenomena. Composites based on the phase of the El Niño–Southern Oscillation index show a major shift in the mean position and changes in intensity of the ITCZ in all ocean basins as the index varies. Under La Niña conditions, the ITCZ intensifies over the Maritime Continent and eastern Pacific, where the ITCZ weakens over the central and equatorial eastern Pacific. An analysis of changes in the ITCZ and its divergence during the period 1979–2009 indicates that the mean position of the ITCZ shifts southward in the western Pacific and a broad global intensification of the convergence into ITCZ regions. The relationship between tropical cyclogenesis and the ITCZ is also examined, finding that more than 50% of all tropical cyclones form within 600 km of the ITCZ.

Corresponding author address: Gareth Berry, Monash Weather and Climate, Monash University, Wellington Road, Clayton, VIC 3800, Australia. E-mail: gareth.berry@monash.edu
Save
  • Berry, G., C. Jakob, and M. Reeder, 2011: Recent global trends in atmospheric fronts. Geophys. Res. Lett., 38, L21812, doi:10.1029/2011GL049481.

    • Search Google Scholar
    • Export Citation
  • Brown, J. R., S. B. Power, F. P. Delage, R. A. Colman, A. F. Moise, and B. F. Murphy, 2011: Evaluation of the South Pacific convergence zone in IPCC AR4 climate model simulations of the twentieth century. J. Climate, 24, 15651582.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., and J. L. Evans, 2002: Comparison of the structure of the ITCZ in the west Pacific during the boreal summers of 1989–93 using AMIP simulations and ECMWF reanalysis. J. Climate, 15, 35493568.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and B. Chen, 2004: Single and double ITCZ in an aqua-planet model with constant sea surface temperature and solar angle. Climate Dyn., 22, 447459.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and A. Braun, 2012: A climatology of subtropical cyclones in the South Atlantic. J. Climate,25, 7328–7340.

  • Gu, G., R. F. Adler, and A. H. Sobel, 2005: The eastern Pacific ITCZ during the boreal spring. J. Atmos. Sci., 62, 11571174.

  • Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 3765.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Lélé, I., and P. J. Lamb, 2010: Variability of the intertropical front (ITF) and rainfall over the West African Sudan–Sahel zone. J. Climate,23, 3984–4004.

  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525.

  • Lumpkin, R., and S. Garzoli, 2011: Interannual to decadal changes in the western South Atlantic’s surface circulation. J. Geophys. Res.,116, C01014, doi:10.1029/2010JC006285.

  • McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, R. L. Elsberry, Ed., World Meteorological Organization, 63–105.

  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, R. W. Moore, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989.

    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., and A. Clement, 2005: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., 32, L03809, doi:10.1029/2004GL021765.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. J. Vollaro, 2013: What percentage of western North Pacific tropical cyclones form within the monsoon trough? Mon. Wea. Rev.,141, 499–505.

  • Rácz, Z., and R. K. Smith, 1999: The dynamics of heat lows. Quart. J. Roy. Meteor. Soc., 125, 225252.

  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1975: The upper tropospheric circulation over the global tropics. University of Hawaii Department of Meteorology Rep. UHMET-75-05, 35 pp.

  • Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, doi:10.1029/2011JD016677.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174.

  • Wang, C.-C., and G. Magnusdottir, 2006: The ITCZ in the central and eastern Pacific on synoptic time scales. Mon. Wea. Rev., 134, 14051421.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2001: Double ITCZs. J. Geophys. Res., 106 (D11), 11 78511 792.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4775 1355 154
PDF Downloads 3558 808 131