Response of the Ocean Natural Carbon Storage to Projected Twenty-First-Century Climate Change

Raffaele Bernardello Department of Earth and Environmental Science, The University of Pennsylvania, Philadelphia, Pennsylvania

Search for other papers by Raffaele Bernardello in
Current site
Google Scholar
PubMed
Close
,
Irina Marinov Department of Earth and Environmental Science, The University of Pennsylvania, Philadelphia, Pennsylvania

Search for other papers by Irina Marinov in
Current site
Google Scholar
PubMed
Close
,
Jaime B. Palter Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Jaime B. Palter in
Current site
Google Scholar
PubMed
Close
,
Jorge L. Sarmiento Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Jorge L. Sarmiento in
Current site
Google Scholar
PubMed
Close
,
Eric D. Galbraith Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Eric D. Galbraith in
Current site
Google Scholar
PubMed
Close
, and
Richard D. Slater Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Richard D. Slater in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The separate impacts of wind stress, buoyancy fluxes, and CO2 solubility on the oceanic storage of natural carbon are assessed in an ensemble of twentieth- to twenty-first-century simulations, using a coupled atmosphere–ocean–carbon cycle model. Time-varying perturbations for surface wind stress, temperature, and salinity are calculated from the difference between climate change and preindustrial control simulations, and are imposed on the ocean in separate simulations. The response of the natural carbon storage to each perturbation is assessed with novel prognostic biogeochemical tracers, which can explicitly decompose dissolved inorganic carbon into biological, preformed, equilibrium, and disequilibrium components. Strong responses of these components to changes in buoyancy and winds are seen at high latitudes, reflecting the critical role of intermediate and deep waters. Overall, circulation-driven changes in carbon storage are mainly due to changes in buoyancy fluxes, with wind-driven changes playing an opposite but smaller role. Results suggest that climate-driven perturbations to the ocean natural carbon cycle will contribute 20 Pg C to the reduction of the ocean accumulated total carbon uptake over the period 1860–2100. This reflects a strong compensation between a buildup of remineralized organic matter associated with reduced deep-water formation (+96 Pg C) and a decrease of preformed carbon (−116 Pg C). The latter is due to a warming-induced decrease in CO2 solubility (−52 Pg C) and a circulation-induced decrease in disequilibrium carbon storage (−64 Pg C). Climate change gives rise to a large spatial redistribution of ocean carbon, with increasing concentrations at high latitudes and stronger vertical gradients at low latitudes.

Corresponding author address: Raffaele Bernardello, Earth and Environmental Science, The University of Pennsylvania, Hayden Hall, 240 S. 33rd St., Philadelphia, PA 19104-6316. E-mail: braf@sas.upenn.edu

Abstract

The separate impacts of wind stress, buoyancy fluxes, and CO2 solubility on the oceanic storage of natural carbon are assessed in an ensemble of twentieth- to twenty-first-century simulations, using a coupled atmosphere–ocean–carbon cycle model. Time-varying perturbations for surface wind stress, temperature, and salinity are calculated from the difference between climate change and preindustrial control simulations, and are imposed on the ocean in separate simulations. The response of the natural carbon storage to each perturbation is assessed with novel prognostic biogeochemical tracers, which can explicitly decompose dissolved inorganic carbon into biological, preformed, equilibrium, and disequilibrium components. Strong responses of these components to changes in buoyancy and winds are seen at high latitudes, reflecting the critical role of intermediate and deep waters. Overall, circulation-driven changes in carbon storage are mainly due to changes in buoyancy fluxes, with wind-driven changes playing an opposite but smaller role. Results suggest that climate-driven perturbations to the ocean natural carbon cycle will contribute 20 Pg C to the reduction of the ocean accumulated total carbon uptake over the period 1860–2100. This reflects a strong compensation between a buildup of remineralized organic matter associated with reduced deep-water formation (+96 Pg C) and a decrease of preformed carbon (−116 Pg C). The latter is due to a warming-induced decrease in CO2 solubility (−52 Pg C) and a circulation-induced decrease in disequilibrium carbon storage (−64 Pg C). Climate change gives rise to a large spatial redistribution of ocean carbon, with increasing concentrations at high latitudes and stronger vertical gradients at low latitudes.

Corresponding author address: Raffaele Bernardello, Earth and Environmental Science, The University of Pennsylvania, Hayden Hall, 240 S. 33rd St., Philadelphia, PA 19104-6316. E-mail: braf@sas.upenn.edu
Save
  • Anderson, L. A., and J. L. Sarmiento, 1994: Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8, 6580, doi:10.1029/93GB03318.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., G. A. Meehl, and D. J. Karoly, 2011: Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases. Geophys. Res. Lett., 38, L02701, doi:10.1029/2010GL045384.

    • Search Google Scholar
    • Export Citation
  • Archer, D., P. Martin, B. Buffett, V. Brovkin, S. Rahmstorf, and A. Ganopolski, 2004: The importance of ocean temperature to global biogeochemistry. Earth Planet. Sci. Lett., 222, 333348, doi:10.1016/j.epsl.2004.03.011.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, doi:10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Brewer, P., 1978: Direct observation of oceanic CO2 increase. Geophys. Res. Lett., 5, 9971000, doi:10.1029/GL005i012p00997.

  • Broecker, W. S., 1974: “NO,” a conservative water-mass tracer. Earth Planet. Sci. Lett.,23, 100–107, doi:10.1016/0012-821X(74)90036-3.

  • Capotondi, A., M. A. Alexander, N. A. Bond, E. N. Curchitser, and J. D. Scott, 2012: Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res., 117, C04031, doi:10.1029/2011JC007409.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and F. Millero, 1979: Gradual increase of oceanic CO2. Nature, 277, 205206, doi:10.1038/277205a0.

  • Cheng, W., J. C. H. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 7187–7197.

    • Search Google Scholar
    • Export Citation
  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11 26711 292, doi:10.5194/acp-11-11267-2011.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., J. Palter, E. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, in press.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2008: Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20708, doi:10.1029/2008GL035166.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., and A. M. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. J. Climate, 26, 71987220.

  • Dufour, C. O., J. Le Sommer, J. D. Zika, M. Gehlen, J. C. Orr, P. Mathiot, and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Climate, 25, 69586974.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., R. A. Armstrong, A. Gnanadesikan, and J. L. Sarmiento, 2005: Empirical and mechanistic models for the particle export ratio. Global Biogeochem. Cycles, 19, GB4026, doi:10.1029/2004GB002390.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL's ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362.

    • Search Google Scholar
    • Export Citation
  • Duteil, O., and Coauthors, 2012: Preformed and regenerated phosphate in ocean general circulation models: Can right total concentrations be wrong? Biogeosciences, 9, 17971807, doi:10.5194/bg-9-1797-2012.

    • Search Google Scholar
    • Export Citation
  • Duteil, O., W. Koeve, A. Oschlies, D. Bianchi, I. Kriest, E. Galbraith, and R. Matear, 2013: A new estimate of ocean oxygen utilization points to a reduced rate of respiration in the ocean interior. Biosci. Discuss., 10, 22452267, doi:10.5194/bgd-10-2245-2013.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., and T. L. Delworth, 2010: The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr., 40, 23482354.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557.

    • Search Google Scholar
    • Export Citation
  • Follows, M., and R. Williams, 2004: Mechanisms controlling the air–sea flux of CO2 in the North Atlantic. The Ocean Carbon Cycle and Climate, M. Follows and T. Oguz, Eds., Kluwer Academic, 217–249.

  • Galbraith, E. D., A. Gnanadesikan, J. P. Dunne, and M. R. Hiscock, 2010: Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosciences, 7, 10431064.

    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and Coauthors, 2011: Climate variability and radiocarbon in the CM2Mc earth system model. J. Climate, 24, 42304254.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., and L. I. Gordon, 1992: Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr., 37, 13071312.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Goodwin, P., and T. M. Lenton, 2009: Quantifying the feedback between ocean heating and CO2 solubility as an equivalent carbon emission. Geophys. Res. Lett., 36, L15609, doi:10.1029/2009GL039247.

    • Search Google Scholar
    • Export Citation
  • Goodwin, P., R. G. Williams, M. J. Follows, and S. Dutkiewicz, 2007: Ocean–atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales. Global Biogeochem. Cycles, 21, GB1014, doi:10.1029/2006GB002810.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579.

  • Gruber, N., and J. Sarmiento, 2002: Large-scale biogeochemical–physical interactions in elemental cycles. Biological–Physical Interactions in the Sea, A. R. Robinson, J. J. McCarthy, and B. J. Rothschild, Eds., The Sea: Ideas and Observations on Progress in the Study of the Seas, Vol. 12, John Wiley & Sons, 337–399.

  • Gruber, N., J. Sarmiento, and T. Stocker, 1996: An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem. Cycles, 10, 809837, doi:10.1029/96GB01608.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Hirabara, M., H. Tsujino, H. Nakano, and G. Yamanaka, 2012: Formation mechanism of the Weddell Sea polynya and the impact on the global abyssal ocean. J. Oceanogr., 68, 771796, doi:10.1007/s10872-012-0139-3.

    • Search Google Scholar
    • Export Citation
  • Ito, T., and M. Follows, 2005: Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res., 63, 813839, doi:10.1357/0022240054663231.

    • Search Google Scholar
    • Export Citation
  • Ito, T., M. Follows, and E. Boyle, 2004a: Is AOU a good measure of respiration in the oceans? Geophys. Res. Lett., 31, L17305, doi:10.1029/2004GL020900.

    • Search Google Scholar
    • Export Citation
  • Ito, T., J. Marshall, and M. Follows, 2004b: What controls the uptake of transient tracers in the Southern Ocean? Global Biogeochem. Cycles, 18, GB2021, doi:10.1029/2003GB002103.

    • Search Google Scholar
    • Export Citation
  • Ito, T., M. Woloszyn, and M. Mazloff, 2010: Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature, 463, 8083, doi:10.1038/nature08687.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., K. B. Rodgers, I. Stendardo, O. Aumont, G. Madec, L. Bopp, O. Mangoni, and M. R. d’Alcala, 2011: Water masses as a unifying framework for understanding the Southern Ocean carbon cycle. Biogeosciences, 8, 10311052, doi:10.5194/bg-8-1031-2011.

    • Search Google Scholar
    • Export Citation
  • Jin, X., N. Gruber, J. P. Dunne, J. L. Sarmiento, and R. A. Armstrong, 2006: Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochem. Cycles, 20, GB2015, doi:10.1029/2005GB002532.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., N. P. Gillett, L. J. Gray, and M. Dall’Amico, 2010: Influence of ozone recovery and greenhouse gas increases on Southern Hemisphere circulation. J. Geophys. Res., 115, D22117, doi:10.1029/2010JD014423.

    • Search Google Scholar
    • Export Citation
  • Kwon, E. Y., J. L. Sarmiento, J. R. Toggweiler, and T. DeVries, 2011: The control of atmospheric pCO2 by ocean ventilation change: The effect of the oceanic storage of biogenic carbon. Global Biogeochem. Cycles, 25, GB3026, doi:10.1029/2011GB004059.

    • Search Google Scholar
    • Export Citation
  • Lauderdale, J., A. Garabato, K. Oliver, M. Follows, and R. Williams, 2013: Wind-driven changes in Southern Ocean residual circulation, ocean carbon reservoirs and atmospheric CO2. Climate Dyn., 41, 2145–2164, doi:10.1007/s00382-012-1650-3.

    • Search Google Scholar
    • Export Citation
  • Law, R. M., R. J. Matear, and R. J. Francey, 2008: Comment on “Saturation of the Southern Ocean CO2 sink due to recent climate change.” Science, 319, 570, doi:10.1126/science.1149077.

    • Search Google Scholar
    • Export Citation
  • Lenton, A., and R. J. Matear, 2007: Role of the southern annular mode (SAM) in southern ocean CO2 uptake. Global Biogeochem. Cycles, 21, GB2016, doi:10.1029/2006GB002714.

    • Search Google Scholar
    • Export Citation
  • Lenton, A., and Coauthors, 2012: The observed evolution of oceanic pCO2 and its drivers over the last two decades. Global Biogeochem. Cycles, 26, GB2021, doi:10.1029/2011GB004095.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 17351738, doi:10.1126/science.1136188.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., T. Takahashi, E. T. Buitenhuis, C. Rödenbeck, and S. C. Sutherland, 2010: Impact of climate change and variability on the global oceanic sink of CO2. Global Biogeochem. Cycles, 24, GB4007, doi:10.1029/2009GB003599.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., N. Gruber, and S. C. Doney, 2008: Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochem. Cycles, 22, GB3016, doi:10.1029/2007GB003139.

    • Search Google Scholar
    • Export Citation
  • Marinov, I., A. Gnanadesikan, J. Toggweiler, and J. Sarmiento, 2006: The Southern Ocean biogeochemical divide. Nature, 441, 964967, doi:10.1038/nature04883.

    • Search Google Scholar
    • Export Citation
  • Marinov, I., M. Follows, A. Gnanadesikan, J. L. Sarmiento, and R. D. Slater, 2008a: How does ocean biology affect atmospheric pCO2? Theory and models. J. Geophys. Res., 113, C07032, doi:10.1029/2007JC004598.

    • Search Google Scholar
    • Export Citation
  • Marinov, I., A. Gnanadesikan, J. L. Sarmiento, J. R. Toggweiler, M. Follows, and B. K. Mignone, 2008b: Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Global Biogeochem. Cycles, 22, GB3007, doi:10.1029/2007GB002958.

    • Search Google Scholar
    • Export Citation
  • Martin, J., G. Knauer, D. Karl, and W. Broenkow, 1987: VERTEX—Carbon cycling in the northeast Pacific. Deep-Sea Res. I, 34, 267285, doi:10.1016/0198-0149(87)90086-0.

    • Search Google Scholar
    • Export Citation
  • Matear, R. J., and A. Hirst, 1999: Climate change feedback on the future oceanic CO2 uptake. Tellus,51B, 722733, doi:10.1034/j.1600-0889.1999.t01-1-00012.x.

    • Search Google Scholar
    • Export Citation
  • Matear, R. J., and A. Lenton, 2008: Impact of historical climate change on the Southern Ocean carbon cycle. J. Climate, 21, 58205834.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. N. Garabato, A. M. Hogg, and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3, 283299.

    • Search Google Scholar
    • Export Citation
  • Najjar, R., and J. C. Orr, 1999: Biotic-HOWTO. Internal Ocean-Carbon Cycle Model Intercomparison Project (OCMIP) Rep., Laboratoire des Sciences du Climat et l’Environnement, CEA, 15 pp.

  • Palter, J. B., S. M. Griffies, B. L. Samuels, E. D. Galbraith, A. Gnanadesikan, and A. Klocker, 2014: The deep ocean buoyancy budget and its temporal variability. J. Climate, 27, 551573.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., M. Previdi, and C. Deser, 2011: Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett., 38, L04707, doi:10.1029/2011GL046712.

    • Search Google Scholar
    • Export Citation
  • Rayner, D., and Coauthors, 2011: Monitoring the Atlantic meridional overturning circulation. Deep-Sea Res. II, 58, 17441753, doi:10.1016/j.dsr2.2010.10.056.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., A. Gruebler, and N. Nakicenovic, 2007: Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecasting Soc. Change, 74, 887935, doi:10.1016/j.techfore.2006.05.026.

    • Search Google Scholar
    • Export Citation
  • Sabine, C., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, doi:10.1126/science.1097403.

  • Sallee, J.-B., R. J. Matear, S. R. Rintoul, and A. Lenton, 2012: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci., 5, 579584, doi:10.1038/NGEO1523.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J., and J. Toggweiler, 1984: A new model for the role of the oceans in determining atmospheric pCO2. Nature, 308, 621624, doi:10.1038/308621a0.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J., and C. Le Quéré, 1996: Oceanic carbon dioxide uptake in a model of century-scale global warming. Science, 274, 13461350, doi:10.1126/science.274.5291.1346.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J., and N. Gruber, 2006: Ocean Biogeochemical Dynamics. Princeton University Press, 526 pp.

  • Sarmiento, J., T. Hughes, R. Stouffer, and S. Manabe, 1998: Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245249, doi:10.1038/30455.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J., J. Dunne, A. Gnanadesikan, R. M. Key, K. Matsumoto, and R. Slater, 2002: A new estimate of the CaCO3 to organic carbon export ratio. Global Biogeochem. Cycles,16, 1107, doi:10.1029/2002GB001919.

  • Sayles, F., 1985: CaCo3 solubility in marine-sediments—Evidence for equilibrium and non-equilibrium behavior. Geochim. Cosmochim. Acta, 49, 877888, doi:10.1016/0016-7037(85)90180-2.

    • Search Google Scholar
    • Export Citation
  • Sigman, D. M., and E. Boyle, 2000: Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859869, doi:10.1038/35038000.

    • Search Google Scholar
    • Export Citation
  • Sigman, D. M., M. P. Hain, and G. H. Haug, 2010: The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466, 4755, doi:10.1038/nature09149.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., and A. Y. Karpechko, 2012: Sensitivity of the southern annular mode to greenhouse gas emission scenarios. Climate Dyn., 38, 563572, doi:10.1007/s00382-011-1121-2.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, doi:10.1029/2009GL038671.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and R. E. Davis, 2007: Winter jet stream trends over the Northern Hemisphere. Quart. J. Roy. Meteor. Soc.,133, 2109–2115, doi:10.1002/qj.171.

  • Thompson, D., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Volk, T., and M. I. Hoffert, 1985: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, Geophys. Monogr., Vol. 32, Amer. Geophys. Union, 99–110.

  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97 (C5), 73737382.

  • Waugh, D. W., F. Primeau, T. DeVries, and M. Holzer, 2013: Recent changes in the ventilation of the southern oceans. Science, 339, 568570, doi:10.1126/science.1225411.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P., A. Winguth, and E. Maier-Reimer, 2005: Sea-to-air CO2 flux from 1948 to 2003: A model study. Global Biogeochem. Cycles, 19, GB2005, doi:10.1029/2004GB002339.

    • Search Google Scholar
    • Export Citation
  • Williams, R., and M. Follows, 2011: Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms. Cambridge University Press, 404 pp.

  • Zickfeld, K., J. C. Fyfe, M. Eby, and A. J. Weaver, 2008: Comment on “Saturation of the Southern Ocean CO2 sink due to recent climate change.” Science, 319, 570, doi:10.1126/science.1146886.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2893 986 57
PDF Downloads 1126 143 22