Multivariate Probability Density Functions with Dynamics in the GFDL Atmospheric General Circulation Model: Global Tests

Huan Guo UCAR Visiting Scientist Programs, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Huan Guo in
Current site
Google Scholar
PubMed
Close
,
Jean-Christophe Golaz NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Jean-Christophe Golaz in
Current site
Google Scholar
PubMed
Close
,
Leo J. Donner NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Leo J. Donner in
Current site
Google Scholar
PubMed
Close
,
Paul Ginoux NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Paul Ginoux in
Current site
Google Scholar
PubMed
Close
, and
Richard S. Hemler High Performance Technologies Group, DRC/GFDL, Princeton, New Jersey

Search for other papers by Richard S. Hemler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A unified turbulence and cloud parameterization based on multivariate probability density functions (PDFs) has been incorporated into the GFDL atmospheric general circulation model (AM3). This PDF-based parameterization not only predicts subgrid variations in vertical velocity, temperature, and total water, which bridge subgrid-scale processes (e.g., aerosol activation and cloud microphysics) and grid-scale dynamic and thermodynamic fields, but also unifies the treatment of planetary boundary layer (PBL), shallow convection, and cloud macrophysics. This parameterization is called the Cloud Layers Unified by Binormals (CLUBB) parameterization. With the incorporation of CLUBB in AM3, coupled with a two-moment cloud microphysical scheme, AM3–CLUBB allows for a more physically based and self-consistent treatment of aerosol activation, cloud micro- and macrophysics, PBL, and shallow convection.

The configuration and performance of AM3–CLUBB are described. Cloud and radiation fields, as well as most basic climate features, are modeled realistically. Relative to AM3, AM3–CLUBB improves the simulation of coastal stratocumulus, a longstanding deficiency in GFDL models, and their seasonal cycle, especially at higher horizontal resolution, but global skill scores deteriorate slightly. Through sensitivity experiments, it is shown that 1) the two-moment cloud microphysics helps relieve the deficiency of coastal stratocumulus, 2) using the CLUBB subgrid cloud water variability in the cloud microphysics has a considerable positive impact on global cloudiness, and 3) the impact of adjusting CLUBB parameters is to improve the overall agreement between model and observations.

Corresponding author address: Huan Guo, UCAR Visiting Scientist Programs, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540. E-mail: huan.guo@noaa.gov

Abstract

A unified turbulence and cloud parameterization based on multivariate probability density functions (PDFs) has been incorporated into the GFDL atmospheric general circulation model (AM3). This PDF-based parameterization not only predicts subgrid variations in vertical velocity, temperature, and total water, which bridge subgrid-scale processes (e.g., aerosol activation and cloud microphysics) and grid-scale dynamic and thermodynamic fields, but also unifies the treatment of planetary boundary layer (PBL), shallow convection, and cloud macrophysics. This parameterization is called the Cloud Layers Unified by Binormals (CLUBB) parameterization. With the incorporation of CLUBB in AM3, coupled with a two-moment cloud microphysical scheme, AM3–CLUBB allows for a more physically based and self-consistent treatment of aerosol activation, cloud micro- and macrophysics, PBL, and shallow convection.

The configuration and performance of AM3–CLUBB are described. Cloud and radiation fields, as well as most basic climate features, are modeled realistically. Relative to AM3, AM3–CLUBB improves the simulation of coastal stratocumulus, a longstanding deficiency in GFDL models, and their seasonal cycle, especially at higher horizontal resolution, but global skill scores deteriorate slightly. Through sensitivity experiments, it is shown that 1) the two-moment cloud microphysics helps relieve the deficiency of coastal stratocumulus, 2) using the CLUBB subgrid cloud water variability in the cloud microphysics has a considerable positive impact on global cloudiness, and 3) the impact of adjusting CLUBB parameters is to improve the overall agreement between model and observations.

Corresponding author address: Huan Guo, UCAR Visiting Scientist Programs, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540. E-mail: huan.guo@noaa.gov
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Barker, H., B. A. Weilicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53, 23042316.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. W. M. Cuijpers, P. Mascart, and P. Trouilhet, 1995: Modeling of trade wind cumuli with a low-order turbulence model: Toward a unified description of Cu and Sc clouds in meteorological models. J. Atmos. Sci., 52, 455463.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst., 5, 195211, doi:10.1002/jame.20018.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., S. K. Krueger, and M. Khairoutdinov, 2010: Assumed probability density functions for shallow and deep convection. J. Adv. Model. Earth Syst.,2, 10, doi:10.3894/JAMES.2010.2.10.

  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen, N. R. Meyrer, and C. Craig, 2012: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: Single-column experiments. Geosci. Model Dev., 5, 14071423, doi:10.5194/gmd-5-1407-2012.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 23, 96559676.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Diner, D. J., and Coauthors, 1998: Multi-angle Imaging Spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens., 36, 10721087.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50, 889906.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, and R. S. Hemler, 1999: Three-dimensional cloud-system modeling of GATE convection. J. Atmos. Sci., 56, 18851912.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, and R. S. Hemler, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 34443463.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3. J. Climate, 24, 34843519.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970.

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part II: Single-column and global results. J. Climate, 21, 36603679.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002a: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002b: A PDF-based model for boundary layer clouds. Part II: Model results. J. Atmos. Sci., 59, 35523571.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, J. A. Hansen, D. P. Schanen, and B. M. Griffin, 2007: Elucidating model inadequacies in a cloud parameterization by use of an ensemble-based calibration framework. Mon. Wea. Rev., 135, 40774096.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., M. Salzmann, L. J. Donner, L. W. Horowitz, Y. Ming, and M. Zhao, 2011: Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J. Climate, 24, 31453160.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., L. W. Horowitz, and H. Levy II, 2013: Cloud tuning in a coupled climate model: Impact on 20th century warming. Geophys. Res. Lett.,40, 2246–2251, doi:10.1002/grl.50232.

  • Gordon, C. T., A. Rosati, and R. Gudgel, 2000: Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate, 13, 22392260.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544.

    • Search Google Scholar
    • Export Citation
  • Guo, H., J.-C. Golaz, L. J. Donner, V. E. Larson, D. P. Schanen, and B. M. Griffin, 2010: Multi-variate probability density functions with dynamics for cloud droplet activation in large-scale models: Single column tests. Geosci. Model Dev., 3, 475486, doi:10.5194/gmd-3-475-2010.

    • Search Google Scholar
    • Export Citation
  • Guo, H., J.-C. Golaz, and L. J. Donner, 2011: Aerosol effects on stratocumulus water paths in a PDF-based parameterization. Geophys. Res. Lett., 38, L17808, doi:10.1029/2011GL048611.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 60, 116.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2011: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Jolliff, J. K., J. C. Kindle, I. Shulman, B. Penta, M. A. M. Friedrichs, R. Helber, and R. A. Arnone, 2009: Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Mar. Syst., 76, 6482, doi:10.1016/j.jmarsys.2008.05.014.

    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., B. J. Gaitley, J. V. Martonchik, D. J. Diner, K. A. Crean, and B. Holben, 2005: Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res.,110, D10S04, doi:10.1029/2004JD004706.

  • Kato, S., and Coauthors, 2011: Improvements in top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity. IEEE Trans. Geosci. Remote Sens., 41, 442458, doi:10.1109/TGRS.2002.808226.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Köhler, M., M. Ahlgrimm, and A. Beljaars, 2011: Unified treatment of dry convective and stratocumulus-topped boundary layers in the ECMWF model. Quart. J. Roy. Meteor. Soc., 137, 4357.

    • Search Google Scholar
    • Export Citation
  • Lappen, C.-L., and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci., 58, 20212036.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19, 23252345.

  • Larson, V. E., and J.-C. Golaz, 2005: Using probability density functions to derive consistent closure relationships among higher-order moments. Mon. Wea. Rev., 133, 10231042.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001a: Small-scale and mesoscale variability of scalars in cloudy boundary layers: One-dimensional probability density function. J. Atmos. Sci., 58, 19781994.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001b: Systematic biases in the microphysics and thermodynamics of numerical models that ignore subgrid-scale variability. J. Atmos. Sci., 58, 11171128.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., J.-C. Golaz, and W. R. Cotton, 2002: Small-scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. J. Atmos. Sci., 59, 35193539.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., J.-C. Golaz, H. Jiang, and W. R. Cotton, 2005: Supplying local microphysics parameterizations with information about subgrid variability: Latin hypercube sampling. J. Atmos. Sci., 62, 40104026.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., D. P. Schanen, M. Wang, M. Ovchinnikov, and S. Ghan, 2012: PDF parameterization of boundary layer clouds in models with horizontal grid spacings from 2 to 16 km. Mon. Wea. Rev., 140, 285306.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M., H. Morrison, and A. Gettelman, 2013: Microphysical implications of cloud-precipitation covariance derived from satellite remote sensing. J. Geophys. Res., 118, 65216533, doi:10.1002/jgrd.50347.

    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1968: Models of cloud topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309.

  • Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499514.

  • Liu, X., J. E. Penner, S. J. Ghan, and M. Wang, 2007: Inclusion of ice microphysics in the NCAR Community Atmospheric Model version 3 (CAM3). J. Climate, 20, 45264547.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. Bush, G. Martin, and R. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199.

    • Search Google Scholar
    • Export Citation
  • Loeb, N., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9, 16351645.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with hydrologic cycle. Mon. Wea. Rev., 93, 769798.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 2014: Ocean–cloud–atmosphere–land interactions in the southeastern Pacific: The VOCALS program. Bull. Amer. Meteor. Soc.,in press.

  • Mellor, G., 1977: The Gaussian cloud model relations. J. Atmos. Sci., 34, 356358.

  • Ming, Y., V. Ramaswamy, L. J. Donner, and V. T. J. Phillips, 2006: A new parameterization of cloud droplet activation applicable to general circulation models. J. Atmos. Sci., 63, 13481356.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, L. J. Donner, V. T. J. Phillips, S. A. Klein, P. A. Ginoux, and L. W. Horowitz, 2007: Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model. J. Atmos. Sci., 64, 11891209.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659.

    • Search Google Scholar
    • Export Citation
  • Neggers, R., 2009: A dual mass flux framework for boundary-layer convection. Part II: Cloud. J. Atmos. Sci., 66, 14891506.

  • Neggers, R., M. Köhler, and A. Beljaars, 2009: A dual mass flux framework for boundary-layer convection. Part I: Transport. J. Atmos. Sci., 66, 14651487.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469.

    • Search Google Scholar
    • Export Citation
  • Perraud, E., F. Couvreux, S. Malardel, C. Lac, V. Masson, and O. Thouron, 2011: Evaluation of statistical distributions for the parametrization of subgrid boundary-layer clouds. Bound.-Layer Meteor., 140, 263294, doi:10.1007/s10546-011-9607-3.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64, 738761.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and S. A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large-scale models. J. Geophys. Res., 105 (D22), 27 05927 065.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., R. Hemler, and S. A. Klein, 2006: Using stochastically generated subcolumns to represent cloud structure in a large-scale model. Mon. Wea. Rev., 134, 36443656.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., C. P. Batstone, R. J. P. Hofmann, K. E. Taylor, and P. J. Glecker, 2008: Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J. Geophys. Res., 113, D14209, doi:10.1029/2007JD009334.

    • Search Google Scholar
    • Export Citation
  • Posselt, R., and U. Lohmann, 2009: Sensitivity of the total anthropogenic aerosol effect to the treatment of rain in a global climate model. Geophys. Res. Lett., 36, L02805, doi:10.1029/2008GL035796.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cube-sphere grids. J. Comput. Phys., 227, 5578.

  • Quaas, J., and Coauthors, 2009: Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 86978717, doi:10.5194/acp-9-8697-2009.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Coakley, C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65, 12901301.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C.-H. Moeng, 1992: A second-order bulk boundary-layer model. J. Atmos. Sci., 49, 19031923.

  • Ringler, T. D., D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, and W. Skamarock, 2011: Exploring a multiresolution modeling approach within the shallow-water equations. Mon. Wea. Rev., 139, 33483368.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I, Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 12271282.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128, 10701088.

    • Search Google Scholar
    • Export Citation
  • Salzmann, M., Y. Ming, J.-C. Golaz, P. A. Ginoux, H. Morrisson, A. Gettelman, M. Krämer, and L. J. Donner, 2010: Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: Description, evaluation, and sensitivity tests. Atmos. Chem. Phys., 10, 80378064, doi:10.5194/acp-10-8037-2010.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the earth’s radiation budget to changes in low clouds. Nature, 343, 4951.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate systems: A critical review. J. Climate, 18, 237273.

  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/NGEO1580.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593.

  • Suarez, M., A. Arakawa, and D. A. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111, 22242243.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale model. Mon. Wea. Rev., 121, 30403061.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Voldoire, A., and Coauthors, 2012: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 2091–2121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and Coauthors, 2012: Constraining cloud lifetime effects of aerosols using A-Train satellite observations. Geophys. Res. Lett., 39, L15709, doi:10.1029/2012GL052204.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chevin, and R. L. Jenne, 1986: Global distribution of total cloud cover and cloud types over land. NCAR Tech. Note NCAR/TN-273+STR, 232 pp.

  • Warren, S. G., C. J. Hahn, J. London, R. M. Chevin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud types over the ocean. NCAR Tech. Note NCAR/TN-317+STR, 212 pp.

  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423.

  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4026 1446 112
PDF Downloads 314 66 5