An Assessment of Atmospheric Water Budget Components over Tropical Oceans

Paula J. Brown Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Paula J. Brown in
Current site
Google Scholar
PubMed
Close
and
Christian D. Kummerow Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Balancing global moisture budgets is a difficult task that is even more challenging at regional scales. Atmospheric water budget components are investigated within five tropical (15°S–15°N) ocean regions, including the Indian Ocean, three Pacific regions, and one Atlantic region, to determine how well data products balance these budgets. Initially, a selection of independent observations and a reanalysis product are evaluated to determine overall closure, between 1998 and 2007. Satellite-based observations from SeaFlux evaporation and Global Precipitation Climatology Project (GPCP) precipitation, together with Interim ECMWF Re-Analysis (ERA-Interim) data products, were chosen. Freshwater flux (evaporation minus precipitation) observations and reanalysis atmospheric moisture divergence regional averages are assessed for closure. Moisture budgets show the best closure over the Indian Ocean with a correlation of 89% and an overall imbalance of −3.0% of the anomalies. Of the five regions, the western Pacific Ocean region produces the worst atmospheric moisture budget closure of −21.1%, despite a high correlation of 93%. Average closure over the five regions is within 8.1%, and anomalies are correlated at 83%. ERA-Interim and Modern-Era Retrospective Analysis for Research and Applications (MERRA) evaporation rates are 29 and 19 mm month−1 greater than SeaFlux, respectively. To diagnose the differences, wind speed and humidity gradients of the three products are compared utilizing the bulk formula for evaporation. SeaFlux wind speeds are higher, but sea–air humidity gradients are lower. Higher humidity gradients in the reanalyses are due to much dryer near-surface air in ERA-Interim, and the same to a lesser degree in MERRA. These differences counteract each other somewhat, but overall humidity biases exceed wind biases. This is consistent with buoy observations.

Corresponding author address: Paula J. Brown, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: pbrown@atmos.colostate.edu

Abstract

Balancing global moisture budgets is a difficult task that is even more challenging at regional scales. Atmospheric water budget components are investigated within five tropical (15°S–15°N) ocean regions, including the Indian Ocean, three Pacific regions, and one Atlantic region, to determine how well data products balance these budgets. Initially, a selection of independent observations and a reanalysis product are evaluated to determine overall closure, between 1998 and 2007. Satellite-based observations from SeaFlux evaporation and Global Precipitation Climatology Project (GPCP) precipitation, together with Interim ECMWF Re-Analysis (ERA-Interim) data products, were chosen. Freshwater flux (evaporation minus precipitation) observations and reanalysis atmospheric moisture divergence regional averages are assessed for closure. Moisture budgets show the best closure over the Indian Ocean with a correlation of 89% and an overall imbalance of −3.0% of the anomalies. Of the five regions, the western Pacific Ocean region produces the worst atmospheric moisture budget closure of −21.1%, despite a high correlation of 93%. Average closure over the five regions is within 8.1%, and anomalies are correlated at 83%. ERA-Interim and Modern-Era Retrospective Analysis for Research and Applications (MERRA) evaporation rates are 29 and 19 mm month−1 greater than SeaFlux, respectively. To diagnose the differences, wind speed and humidity gradients of the three products are compared utilizing the bulk formula for evaporation. SeaFlux wind speeds are higher, but sea–air humidity gradients are lower. Higher humidity gradients in the reanalyses are due to much dryer near-surface air in ERA-Interim, and the same to a lesser degree in MERRA. These differences counteract each other somewhat, but overall humidity biases exceed wind biases. This is consistent with buoy observations.

Corresponding author address: Paula J. Brown, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: pbrown@atmos.colostate.edu
Save
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, M. Zahn, D. A. Lavers, E. Koukouvagias, and A. Bodas-Salcedo, 2013: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., doi:10.1007/s10712-012-9213-z.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., C. Klepp, K. Fennig, S. Bakan, H. Grassl, and J. Schulz, 2011: Evaluation of HOAPS-3 ocean surface freshwater flux components. J. Appl. Meteor. Climatol., 50, 379398.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., 2012: Thermodynamic scaling of the hydrological cycle of the Last Glacial Maximum. J. Climate, 25, 9921006.

  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739.

  • Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16, 619635.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., Z. Wang, X. Zeng, M. Bosilovich, and C. Shie, 2011: An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J. Climate, 24, 54695493.

    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20, 15271532.

  • Clayson, C. A., and A. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Climate, 26, 25462556.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85, 409424.

  • Dee, D. P., and S. M. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and B. J. Soden, 2011: Evidence for a weakening of tropical surface wind extremes in response to atmospheric warming. Geophys. Res. Lett., 38, L09706, doi:10.1029/2011GL047138.

    • Search Google Scholar
    • Export Citation
  • Gastineau, G., H. Le Treut, and L. Li, 2009: The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Climate, 22, 39934013.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699; Corrigendum, 24, 1559–1560.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., 2009: The passive microwave water cycle product. Remote Sensing Systems Rep. 072409, 30 pp.

  • Huffman, G. J., R. F. Adler, M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and R. F. Adler, cited 2012: GPCP version 1.2 One-Degree Daily (1DD) Precipitation Data Set. NCDC. [Available online at http://www.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.html.]

  • Iwasaki, S., M. Kubota, and H. Tomita, 2010: Evaluation of bulk method for satellite-derived latent heat flux. J. Geophys. Res., 115, C07007, doi:10.1029/2010JC006175.

    • Search Google Scholar
    • Export Citation
  • Kessomkiat, W., H. Franssen, A. Graf, and H. Vereecken, 2013: Estimating random errors of eddy covariance data: An extended two-tower approach. Agric. For. Meteor., 171–172, 203219.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and M. J. Alexander, 2013: Tropical precipitation variability and convectively coupled equatorial waves on submonthly time scales in reanalyses and TRMM. J. Climate, 26, 30133030.

    • Search Google Scholar
    • Export Citation
  • Kumar, B. P., J. Vialard, M. Lengaigne, V. S. N. Murty, and M. J. McPhaden, 2012: TropFlux: Air–sea fluxes for the global tropical oceans—Description and evaluation. Climate Dyn., 38, 15211543.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2012: On the observed trends and changes in global sea surface temperature and air–sea heat fluxes (1984–2006). J. Climate, 25, 61236135.

    • Search Google Scholar
    • Export Citation
  • Liu, G., Y. Liu, and S. Endo, 2013: Evaluation of surface flux parameterizations with long-term ARM observations. Mon. Wea. Rev., 141, 773797.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., M. L. Roderick, R. J. Donohue, and T. G. Van Niel, 2012: Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds. Ecohydrology, 5, 381388.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361.

    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., M. Li, Z. Xu, P. Chang, R. Saravanan, and J.-S. Hsieh, 2012: An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model. Climate Dyn., 39, 24432463.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Springer Verlag, 520 pp.

  • Pfeifroth, U., R. Mueller, and B. Ahrens, 2013: Evaluation of satellite-based and reanalysis precipitation data in the tropical Pacific. J. Appl. Meteor. Climatol., 52, 634644.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Richter, I., S.-P. Xie, A. T. Wittenberg, and Y. Masumoto, 2012: Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Climate Dyn., 38, 9851001.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Roberts, J. B., C. A. Clayson, F. R. Robertson, and D. L. Jackson, 2010: Predicting near-surface atmospheric variables from Special Sensor Microwave/Imager using neural networks with a first-guess approach. J. Geophys. Res., 115, D19113, doi:10.1029/2009JD013099.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. Chen, and T. L. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., and S.-C. Park, 2010: Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res., 115, D15112, doi:10.1029/2009JD013713.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Wentz, F. J., and M. C. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414416.

  • Wentz, F. J., and L. Ricciardulli, 2011: Comment on “Global trends in wind speed and wave height.” Science, 334, 905.

  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235.

  • Wong, S., E. J. Fetzer, B. H. Kahn, B. Tian, B. H. Lambrigtsen, and H. Ye, 2011: Closing the global water vapor budget with AIRS water vapor, MERRA reanalysis, TRMM and GPCP precipitation, and GSSTF surface evaporation. J. Climate, 24, 63076321.

    • Search Google Scholar
    • Export Citation
  • Xie, X., W. T. Liu, and B. Tang, 2008: Space-based estimation of moisture transport in marine atmosphere using support vector regression. Remote Sens. Environ., 112, 18451855.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., S. Zieger, and A. V. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455.

  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution Rep. OA-2008-1, 64 pp.

  • Zahn, M., and R. P. Allan, 2011: Changes in water vapor transports of the ascending branch of the tropical circulation. J. Geophys. Res., 116, D18111, doi:10.1029/2011JD016206.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y. P., K.-M. Xu, Y. C. Sud, and A. K. Betts, 2011: Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res., 116, D09101, doi:10.1029/2010JD015197.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1948 1330 83
PDF Downloads 601 86 13