• Arzel, O., T. Fichefet, and H. Goosse, 2006: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Modell., 12, 401415, doi:10.1016/j.ocemod.2005.08.002.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., R. Graversen, and W. Hazeleger, 2011: Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci., 4, 758761, doi:10.1038/ngeo1285.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., 2008: Some aspects of uncertainty in predicting sea ice thinning. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 63–76.

  • Bitz, C. M., and G. Roe, 2004: A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Climate, 17, 36233632, doi:10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. Holland, E. Hunke, and R. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921, doi:10.1175/JCLI3428.1.

    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, doi:10.1175/2010JCLI3775.1.

    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: Current GCMs’ unrealistic negative feedback in the arctic. J. Climate, 22, 46824695, doi:10.1175/2009JCLI2885.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., 2006: Dynamical greenhouse-plus feedback and polar warming amplification. Part I: A dry radiative-transportive climate model. Climate Dyn., 26, 661675, doi:10.1007/s00382-005-0104-6.

    • Search Google Scholar
    • Export Citation
  • Caldeira, K. and N. Myhrvold, 2013: Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. Environ. Res. Lett.,8, 034039, doi:10.1088/1748-9326/8/3/034039.

  • Chevallier, M., and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, doi:10.1175/JCLI-D-11-00209.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Search Google Scholar
    • Export Citation
  • Flato, G., 2004: Sea-ice and its response to CO2 forcing as simulated by global climate models. Climate Dyn., 23, 229241, doi:10.1007/s00382-004-0436-7.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., P. Stott, D. Cresswell, N. Rayner, C. Gordon, and D. Sexton, 2002: Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett., 29, 2175, doi:10.1029/2001GL014575.

    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 15501568, doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., and Coauthors, 2004: Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus, 56A, 328341, doi:10.1111/j.1600-0870.2004.00060.x.

    • Search Google Scholar
    • Export Citation
  • Kattsov, V. M., V. E. Ryabinin, J. E. Overland, M. C. Serreze, M. Visbeck, J. E. Walsh, W. Meier, and X. Zhang, 2010: Arctic sea-ice change: A grand challenge of climate science. J. Glaciol., 56, 11151121, doi:10.3189/002214311796406176.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard-Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey, 2012: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, 25, 54335450, doi:10.1175/JCLI-D-11-00622.1.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected arctic warming. J. Climate, 24, 14511460, doi:10.1175/2010JCLI3713.1.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I. and R. Knutti, 2012: September Arctic sea ice predicted to disappear near 2°C global warming above present. J. Geophys. Res.,117, D06104, doi:10.1029/2011JD016709.

  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res.,85 (C10), 5529–5554, doi:10.1029/JC085iC10p05529.

  • Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394, doi:10.5194/tc-6-1383-2012.

    • Search Google Scholar
    • Export Citation
  • Miller, G. H., R. B. Alley, J. Brigham-Grette, J. J. Fitzpatrick, L. Polyak, M. C. Serreze, and J. W. White, 2010: Arctic amplification: Can the past constrain the future? Quat. Sci. Rev., 29, 17791790, doi:10.1016/j.quascirev.2010.02.008.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. M., J. Boé, A. Hall, and E. J. Fetzer, 2011: Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Climate Dyn., 36, 945955, doi:10.1007/s00382-010-0756-8.

    • Search Google Scholar
    • Export Citation
  • Ridley, J., J. Lowe, C. Brierley, and G. Harris, 2007: Uncertainty in the sensitivity of Arctic sea ice to global warming in a perturbed parameter climate model ensemble. Geophys. Res. Lett.,34, L19704, doi:10.1029/2007GL031209.

  • Rind, D., R. Healy, C. Parkinson, and D. Martinson, 1995: The role of sea ice in 2 × CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent. J. Climate, 8, 449463, doi:10.1175/1520-0442(1995)008<0449:TROSII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Healy, C. Parkinson, and D. Martinson, 1997: The role of sea ice in 2 × CO2 climate model sensitivity. Part II: Hemispheric dependencies. Geophys. Res. Lett., 24, 14911494, doi:10.1029/97GL01433.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, doi:10.1029/2012GL052676.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., J. M. Arblaster, and R. Knutti, 2011: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, doi:10.1029/2011GL049863.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., and Coauthors, 1999: Global warming and Northern Hemisphere sea ice extent. Science, 286, 19341937, doi:10.1126/science.286.5446.1934.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett.,33, L03701, doi:10.1029/2005GL025244.

  • Winton, M., 2011: Do climate models underestimate the sensitivity of Northern Hemisphere sea ice cover? J. Climate, 24, 39243934, doi:10.1175/2011JCLI4146.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 54 9
PDF Downloads 68 28 7

The Role of the Mean State of Arctic Sea Ice on Near-Surface Temperature Trends

View More View Less
  • 1 Royal Netherlands Meteorological Institute, De Bilt, Netherlands
  • | 2 Royal Netherlands Meteorological Institute, De Bilt, and Wageningen University, Wageningen, Netherlands
  • | 3 Royal Netherlands Meteorological Institute, De Bilt, Netherlands
Restricted access

Abstract

Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread: 1) model formulation, 2) control climate state, and 3) internal climate variability. This study focuses on the influence of Arctic sea ice in the control climate on the intermodel spread in warming, using idealized 1% yr−1 CO2 increase simulations of 33 state-of-the-art global climate models, and combining sea ice–temperature relations on local to large spatial scales. On the Arctic mean scale, the spread in temperature trends is only weakly related to ice volume or area in the control climate, and is probably not dominated by internal variability. This suggests that other processes, such as ocean heat transport and meteorological conditions, play a more important role in the spread of long-term Arctic warming than control sea ice conditions. However, on a local scale, sea ice–warming relations show that in regions with more sea ice, models generally simulate more warming in winter and less warming in summer. The local winter warming is clearly related to control sea ice and universal among models, whereas summer sea ice–warming relations are more diverse, and are probably dominated by differences in model formulation. To obtain a more realistic representation of Arctic warming, it is recommended to simulate control sea ice conditions in climate models so that the spatial pattern is correct.

Corresponding author address: E. C. van der Linden, Royal Netherlands Meteorological Institute, Utrechtseweg 297, 3731 GA, De Bilt, Netherlands. E-mail: linden@knmi.nl

Abstract

Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread: 1) model formulation, 2) control climate state, and 3) internal climate variability. This study focuses on the influence of Arctic sea ice in the control climate on the intermodel spread in warming, using idealized 1% yr−1 CO2 increase simulations of 33 state-of-the-art global climate models, and combining sea ice–temperature relations on local to large spatial scales. On the Arctic mean scale, the spread in temperature trends is only weakly related to ice volume or area in the control climate, and is probably not dominated by internal variability. This suggests that other processes, such as ocean heat transport and meteorological conditions, play a more important role in the spread of long-term Arctic warming than control sea ice conditions. However, on a local scale, sea ice–warming relations show that in regions with more sea ice, models generally simulate more warming in winter and less warming in summer. The local winter warming is clearly related to control sea ice and universal among models, whereas summer sea ice–warming relations are more diverse, and are probably dominated by differences in model formulation. To obtain a more realistic representation of Arctic warming, it is recommended to simulate control sea ice conditions in climate models so that the spatial pattern is correct.

Corresponding author address: E. C. van der Linden, Royal Netherlands Meteorological Institute, Utrechtseweg 297, 3731 GA, De Bilt, Netherlands. E-mail: linden@knmi.nl
Save