• Assel, R. A., 1983: A computerized ice concentration data base for the Great Lakes. NOAA Data Rep. ERL GLERL-24, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, 17 pp. [Available online at www.glerl.noaa.gov/ftp/publications/tech_reports/glerl-024/dr-024.pdf.]

  • Assel, R. A., cited 2003: An electronic atlas of Great Lakes ice cover winters: 1973–2002. Great Lakes Environmental Research Laboratory, Ann Arbor, MI. [Available online at www.glerl.noaa.gov/data/ice/atlas/.]

  • Assel, R. A., 2005: Classification of annual Great Lakes ice cycles: Winters of 1973–2002. J. Climate, 18, 48954905, doi:10.1175/JCLI3571.1.

    • Search Google Scholar
    • Export Citation
  • Austin, J. A., and S. M. Colman, 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett., 34, L06604, doi:10.1029/2006GL029021.

    • Search Google Scholar
    • Export Citation
  • Bates, G. T., F. Giorgi, and S. W. Hostetler, 1993: Toward the simulation of the effects of the Great Lakes on regional climate. Mon. Wea. Rev., 121, 13731387, doi:10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bates, G. T., S. W. Hostetler, and F. Giorgi, 1995: Two-year simulation of the Great Lakes region with a coupled modeling system. Mon. Wea. Rev., 123, 15051522, doi:10.1175/1520-0493(1995)123<1505:TYSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beletsky, D., and Coauthors, 2012: Summer thermal structure and anticyclonic circulation of Lake Erie. Geophys. Res. Lett., 39, L06605, doi:10.1029/2012GL051002.

    • Search Google Scholar
    • Export Citation
  • Bennington, V., G. A. McKinley, N. Kimura, and C. H. Wu, 2010: General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006. J. Geophys. Res., 115, C12015, doi:10.1029/2010JC006261.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., C. Spence, N. Hedstrom, and J. D. Lenters, 2011: Evaporation from Lake Superior: 1. Physical controls and processes. J. Great Lakes Res., 37, 707–716, doi:10.1016/j.jglr.2011.08.009.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1995: Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Climate, 8, 26912704, doi:10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., and D. M. A. Jones, 1972: Review of the influences of the Great Lakes on weather. Water Resour. Res., 8, 360371, doi:10.1029/WR008i002p00360.

    • Search Google Scholar
    • Export Citation
  • Chen, C. S., J. R. Zhu, E. Ralph, S. A. Green, J. W. Budd, and F. Y. Zhang, 2001: Prognostic modeling studies of the Keweenaw current in Lake Superior. Part I: Formation and evolution. J. Phys. Oceanogr., 31, 379395, doi:10.1175/1520-0485(2001)031<0379:PMSOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cox, H. J., 1917: Influence of the Great Lakes upon movement of high and low pressure areas. Proceedings of the Second Pan American Scientific Congress, Vol. 2, G. L. Swiggert, Ed., Government Printing Office, 432459.

  • Desai, A. R., J. A. Austin, V. Bennington, and G. A. McKinley, 2009: Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nat. Geosci., 2, 855858, doi:10.1038/ngeo693.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 72 pp., doi:10.5065/D6668B58.

  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR-TN-387+STR, 88 pp., doi:10.5065/D67W6959.

  • Diffenbaugh, N. S., J. S. Pal, R. J. Trapp, and F. Giorgi, 2005: Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA,102, 15 77415 778, doi:10.1073/pnas.0506042102.

    • Search Google Scholar
    • Export Citation
  • Elguindi, N., and Coauthors, 2011: Regional climatic model RegCM user manual version 4.1. Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, 32 pp. [Available online at http://gforge.ictp.it/gf/download/docmanfileversion/21/544/ReferenceMan4.1.pdf.]

  • Ellis, C. R., H. G. Stefan, and R. Gu, 1991: Water temperature dynamics and heat transfer beneath the ice cover of a lake. Limnol. Oceanogr., 36, 324335, doi:10.4319/lo.1991.36.2.0324.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and H. G. Stefan, 1996: Long-term lake water temperature and ice cover simulations/measurements. Cold Reg. Sci. Technol., 24, 289304, doi:10.1016/0165-232X(95)00019-8.

    • Search Google Scholar
    • Export Citation
  • Fujisaki, A., J. Wang, H. Hu, D. J. Schwab, N. Hawley, and Y. R. Rao, 2013: A modeling study of ice–water processes for Lake Erie using coupled ice-circulation models. J. Great Lakes Res., 38, 585599, doi:10.1016/j.jglr.2012.09.021.

    • Search Google Scholar
    • Export Citation
  • George, J. J., 1940: On the distortion of stream fields by small heat sources. Mon. Wea. Rev., 68, 6366, doi:10.1175/1520-0493(1940)068<0063:OTDOSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and G. T. Bates, 1989: The climatological skill of a regional model over complex terrain. Mon. Wea. Rev., 117, 23252347, doi:10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729, doi:10.3354/cr01018.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp., doi:10.5065/D60Z716B.

  • Gula, J., and W. R. Peltier, 2012: Dynamical downscaling over the Great Lakes basin of North America using the WRF regional climate model: The impact of the Great Lakes system on regional greenhouse warming. J. Climate, 25, 77237742, doi:10.1175/JCLI-D-11-00388.1.

    • Search Google Scholar
    • Export Citation
  • Håkanson, L., 1995: Models to predict Secchi depth in small glacial lakes. Aquat. Sci., 57, 3153, doi:10.1007/BF00878025.

  • Henderson-Sellers, B., 1986: Calculating the surface energy balance for lake and reservoir modeling: A review. Rev. Geophys. 24, 625649.

    • Search Google Scholar
    • Export Citation
  • Holman, K. D., A. D. Gronewold, M. Notaro, and A. Zarrin, 2012: Improving historical precipitation estimates around the Lake Superior basin. Geophys. Res. Lett., 39, L03405, doi:10.1029/2011GL050468.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S., and P. J. Bartlein, 1990: Simulation of lake evaporation with application to modeling lake-level variations at Harney-Malheur Lake, Oregon. Water Resour. Res., 26, 26032612.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S., G. T. Bates, and F. Giorgi, 1993: Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res., 98, 50455057, doi:10.1029/92JD02843.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., F. Giorgi, G. T. Bates, and P. J. Bartlein, 1994: Lake-atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Science, 263, 665668, doi:10.1126/science.263.5147.665.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemire, F., 1961: Winds on the Great Lakes. Preliminary Rep. 2, Great Lakes Institute, University of Toronto, Toronto, Canada, 16 pp.

  • Liang, X.-Z., K. E. Kunkel, G. A. Meehl, R. G. Jones, and J. X. L. Wang, 2008: Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys. Res. Lett., 35, L08709, doi:10.1029/2008GL033666.

    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., 2002: Coupled atmosphere-land-lake climate simulation using a regional model. Verh. Int. Ver. Theor. Angew. Limnol., 28, 17451748.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., 1966: Some effects of Lake Michigan upon squall lines and summertime convection. Satellite Mesometeorology Research Project Research Paper 57, University of Chicago, Chicago, IL, 2 pp.

  • Magnuson, J. J., and Coauthors, 2000: Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289, 17431746, doi:10.1126/science.289.5485.1743.

    • Search Google Scholar
    • Export Citation
  • Martynov, A., L. Sushama, and R. Laprise, 2010: Simulation of temperate freezing lakes by one-dimensional lake models: Performance assessment for interactive coupling with regional climate models. Boreal Environ. Res., 15, 143164. [Available online at www.borenv.net/BER/pdfs/ber15/ber15-143.pdf.]

    • Search Google Scholar
    • Export Citation
  • Martynov, A., L. Sushama, R. Laprise, K. Winger, and B. Dugas, 2012: Interactive lakes in the Canadian Regional Climate Model, version 5: The role of lakes in the regional climate of North America. Tellus, 64A, 16226, doi:10.3402/tellusa.v64i0.16226.

    • Search Google Scholar
    • Export Citation
  • Matsuura, K., and C. J. Willmott, cited 2009: Terrestrial precipitation: 1900–2008 gridded monthly time series (version 2.01). Center for Climatic Research, Department of Geography, University of Delaware, Newark, DE. [Available online at http://climate.geog.udel.edu/~climate/html_pages/Global2_Ts_2009/README.global_p_ts_2009.html.]

  • Mouw, C. B., H. Chen, G. A. McKinley, S. Effler, D. O’Donnell, M. G. Perkins, and C. Strait, 2013: Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties. J. Geophys. Res., 118, 16961714, doi:10.1002/jgrc.20139.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington, 2013a: Influence of the Laurentian Great Lakes on regional climate. J. Climate,26, 789–804, doi:10.1175/JCLI-D-12-00140.1.

  • Notaro, M., A. Zarrin, S. Vavrus, and V. Bennington, 2013b: Simulation of heavy lake-effect snowstorms across the Great Lakes basin by RegCM4: Synoptic climatology and variability. Mon. Wea. Rev.,141, 1990–2014, doi:10.1175/MWR-D-11-00369.1.

  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409, doi:10.1175/BAMS-88-9-1395.

    • Search Google Scholar
    • Export Citation
  • Patterson, J. C., and P. F. Hamblin, 1988: Thermal simulation of a lake with winter ice cover. Limnol. Oceanogr., 33, 323338, doi:10.4319/lo.1988.33.3.0323.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., and P. A. Calabrese, 1959: On some weather influences due to warming of the air by the Great Lakes in winter. J. Meteor., 16, 646652, doi:10.1175/1520-0469(1959)016<0646:OSWIDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwab, D., G. Leshkevich, and G. Muhr, 1992: Satellite measurements of surface water temperature in the Great Lakes: Great Lakes CoastWatch. J. Great Lakes Res., 18, 247258, doi:10.1016/S0380-1330(92)71292-1.

    • Search Google Scholar
    • Export Citation
  • Scott, R. W., and F. A. Huff, 1997: Lake effects on climatic conditions in the Great Lakes basin. Illinois State Water Survey, Champaign, IL, 73 pp. [Available online at www.isws.illinois.edu/pubdoc/CR/ISWSCR-617.pdf.]

  • Stepanenko, V. M., S. Goyette, A. Martynov, M. Perroud, X. Fang, and D. Mironov, 2010: First steps of a Lake Model Intercomparison Project: LakeMIP. Boreal Environ. Res., 15, 191202. [Available online at www.borenv.net/BER/pdfs/ber15/ber15-191.pdf.]

    • Search Google Scholar
    • Export Citation
  • Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst., 4, M02001, doi:10.1029/2011MS000072.

    • Search Google Scholar
    • Export Citation
  • Tierney, J. E., M. T. Mayes, N. Meyer, C. Johnson, P. W. Swarzenski, A. S. Cohen, and J. M. Russell, 2010: Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat. Geosci., 3, 422–425, doi:10.1038/ngeo865.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., M. Notaro, and A. Zarrin, 2013: The role of ice cover in heavy lake-effect snowstorms over the Great Lakes basin as simulated by RegCM4. Mon. Wea. Rev., 141, 148165, doi:10.1175/MWR-D-12-00107.1.

    • Search Google Scholar
    • Export Citation
  • Wang, D. G., G. L. Wang, and E. N. Anagnostou, 2009: Impact of sub-grid variability of precipitation and canopy water storage on hydrological processes in a coupled land–atmosphere model. Climate Dyn., 32, 649662, doi:10.1007/s00382-008-0435-1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., X. Bai, H. Hu, A. Clites, M. Colton, and B. Lofgren, 2012: Temporal and spatial variability of Great Lakes ice cover, 1973–2010. J. Climate, 25, 13181329, doi:10.1175/2011JCLI4066.1.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586, doi:10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and X.-Z. Liang, 2007: Regional climate model simulation of U.S. precipitation and surface air temperature during 1982–2002: Interannual variation. J. Climate, 20, 218232, doi:10.1175/JCLI4129.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 287 134 3
PDF Downloads 192 113 6

Improving Climate Sensitivity of Deep Lakes within a Regional Climate Model and Its Impact on Simulated Climate

View More View Less
  • 1 Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin
Restricted access

Abstract

Regional climate models aim to improve local climate simulations by resolving topography, vegetation, and land use at a finer resolution than global climate models. Lakes, particularly large and deep lakes, are local features that significantly alter regional climate. The Hostetler lake model, a version of which is currently used in the Community Land Model, performs poorly in deep lakes when coupled to the regional climate of the International Centre for Theoretical Physics (ICTP) Regional Climate Model, version 4 (RegCM4). Within the default RegCM4 model, the lake fails to properly stratify, stifling the model’s ability to capture interannual variability in lake temperature and ice cover. Here, the authors improve modeled lake stratification and eddy diffusivity while correcting errors in the ice model. The resulting simulated lake shows improved stratification and interannual variability in lake ice and temperature. The lack of circulation and explicit mixing continues to stifle the model’s ability to simulate lake mixing events and variability in timing of stratification and destratification. The changes to modeled lake conditions alter seasonal means in sea level pressure, temperature, and low-level winds in the entire model domain, highlighting the importance of lake model selection and improvement for coupled simulations. Interestingly, changes to winter and spring snow cover and albedo impact spring warming. Unsurprisingly, regional climate variability is not significantly altered by an increase in lake temperature variability.

Corresponding author address: Val Bennington, Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: benesh@wisc.edu

Abstract

Regional climate models aim to improve local climate simulations by resolving topography, vegetation, and land use at a finer resolution than global climate models. Lakes, particularly large and deep lakes, are local features that significantly alter regional climate. The Hostetler lake model, a version of which is currently used in the Community Land Model, performs poorly in deep lakes when coupled to the regional climate of the International Centre for Theoretical Physics (ICTP) Regional Climate Model, version 4 (RegCM4). Within the default RegCM4 model, the lake fails to properly stratify, stifling the model’s ability to capture interannual variability in lake temperature and ice cover. Here, the authors improve modeled lake stratification and eddy diffusivity while correcting errors in the ice model. The resulting simulated lake shows improved stratification and interannual variability in lake ice and temperature. The lack of circulation and explicit mixing continues to stifle the model’s ability to simulate lake mixing events and variability in timing of stratification and destratification. The changes to modeled lake conditions alter seasonal means in sea level pressure, temperature, and low-level winds in the entire model domain, highlighting the importance of lake model selection and improvement for coupled simulations. Interestingly, changes to winter and spring snow cover and albedo impact spring warming. Unsurprisingly, regional climate variability is not significantly altered by an increase in lake temperature variability.

Corresponding author address: Val Bennington, Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: benesh@wisc.edu
Save