• Baldwin, M. E., J. S. Kain, and M. P. Kay, 2002: Properties of the convection scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Wea. Forecasting, 17, 10631079, doi:10.1175/1520-0434(2002)017<1063:POTCSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and V. A. Gensini, 2013: Variability of central United States April–May tornado day likelihood by phase of the Madden–Julian oscillation. Geophys. Res. Lett., 40, 27902795, doi:10.1002/grl.50522.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., E. H. Berbery, and R. W. Higgins, 2009: Understanding the characteristics of daily precipitation over the United States using the North American Regional Reanalysis. J. Climate, 22, 62686286, doi:10.1175/2009JCLI2838.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, doi:10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., J. Srinivasan, and S. Gadgil, 1996: Tropical deep convection, convective available potential energy and sea surface temperature. J. Meteor. Soc. Japan, 74, 155166.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9, 265278, doi:10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2009: Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, doi:10.1016/j.atmosres.2008.10.005.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and C. A. Doswell III, 2001: Some aspects of the international climatology of tornadoes by damage classification. Atmos. Res., 56, 191201, doi:10.1016/S0169-8095(00)00098-3.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, doi:10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67-68, 7394, doi:10.1016/S0169-8095(03)00045-0.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and D. J. Karoly, 2007: A brief evaluation of precipitation from the North American Regional Reanalysis. J. Hydrometeor., 8, 837846, doi:10.1175/JHM595.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007b: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443, doi:10.1111/j.1600-0870.2007.00238.x.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074, doi:10.1175/2009JAS3101.1.

    • Search Google Scholar
    • Export Citation
  • Cameron, A. C., and F. A. G. Windmeijer, 1996: R-squared measures for count data regression models with applications to health-care utilization. J. Bus. Econ. Stat., 14, 209220. [Available online at http://www.jstor.org/stable/1392433.]

    • Search Google Scholar
    • Export Citation
  • Cook, A. R., and J. T. Schaefer, 2008: The relation of El Niño–Southern Oscillation (ENSO) to winter tornado outbreaks. Mon. Wea. Rev., 136, 31213137, doi:10.1175/2007MWR2171.1.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., and R. H. Johns, 1993: Some wind and instability parameters associated with strong and violent tornadoes. 1: Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 573–582.

  • Davies-Jones, R. P., 1993: Hourly helicity, instability, and EHI in forecasting supercell tornadoes. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 107–111.

  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 361–16 366, doi:10.1073/pnas.1307758110.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, doi:10.1016/j.atmosres.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., A. R. Dean, R. L. Thompson, and B. T. Smith, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part III: Tropical cyclone tornadoes. Wea. Forecasting, 27, 15071519, doi:10.1175/WAF-D-11-00117.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240241.

  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123, doi:10.1175/WAF-D-11-00008.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Hanstrum, B. N., G. A. Mills, A. Watson, J. P. Monteverdi, and C. A. Doswell, 2002: The cool-season tornadoes of California and southern Australia. Wea. Forecasting, 17, 705722, doi:10.1175/1520-0434(2002)017<0705:TCSTOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and W. J. Koss, 1984: Regional and national monthly, seasonal, and annual temperature weighted by area, 1895–1983. Historical Climatology Series 4-3, National Climatic Data Center, 38 pp.

  • Kounkou, R., G. Mills, and B. Timbal, 2009: A reanalysis climatology of cool-season tornado environments over southern Australia. Int. J. Climatol., 29, 20792090, doi:10.1002/joc.1856.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., R. Atlas, D. Enfield, C. Wang, and H. Liu, 2013: Is there an optimal ENSO pattern that enhances large-scale atmospheric processes conducive to tornado outbreaks in the United States? J. Climate, 26, 16261642, doi:10.1175/JCLI-D-12-00128.1.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., and S. J. Camargo, 2009: The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dyn., 32, 125141, doi:10.1007/s00382-008-0380-z.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142, doi:10.1175/1520-0493(1976)104<0133:AEOTPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCullagh, P., and J. A. Nelder, 1989: Generalized Linear Models.2nd ed. Chapman and Hall, 532 pp.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mestre, O., and S. Hallegatte, 2009: Predictors of tropical cyclone numbers and extreme hurricane intensities over the North Atlantic using generalized additive and linear models. J. Climate, 22, 633648, doi:10.1175/2008JCLI2318.1.

    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., C. A. Doswell, and G. S. Lipari, 2003: Shear parameter thresholds for forecasting tornadic thunderstorms in northern and central California. Wea. Forecasting, 18, 357370, doi:10.1175/1520-0434(2003)018<0357:SPTFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, doi:10.1002/qj.170.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., and R. Edwards, 1999: The SPC tornado/severe thunderstorm database. Preprints, 11th Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 215–220.

  • Schultz, L. A., and D. J. Cecil, 2009: Tropical cyclone tornadoes, 1950–2007. Mon. Wea. Rev., 137, 34713484, doi:10.1175/2009MWR2896.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. B., and P. E. Roundy, 2013: The relationship between the Madden–Julian oscillation and U.S. violent tornado outbreaks in the spring. Mon. Wea. Rev., 141, 2087–2095, doi:10.1175/MWR-D-12-00173.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of U.S. tornado occurrence with monthly environmental parameters. Geophys. Res. Lett., 39, L02801, doi:10.1029/2011GL050368.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, doi:10.1073/pnas.0705494104.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, and A. Gluhovsky, 2009: Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations. Geophys. Res. Lett., 36, L01703, doi:10.1029/2008GL036203.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A. and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett.,34, L08702, doi:10.1029/2006GL028905.

  • Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082, doi:10.1175/2010MWR3499.1.

    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, doi:10.1175/WAF910.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, and J. A. Smith, 2010: Modeling of the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705, doi:10.1175/2010MWR3315.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 11131140, doi:10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. Baxter, and A. Kumar, 2012: Climatic role of North American low-level jets on U.S. regional tornado activity. J. Climate, 25, 66666683, doi:10.1175/JCLI-D-11-00568.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, doi:10.1175/BAMS-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., and Y. N. Takayabu, 2009: Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. J. Meteor. Soc. Japan, 87, 525538, doi:10.2151/jmsj.87.525.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., Y. N. Takayuba, and J. C. L. Chan, 2009: Tropical cyclone genesis frequency over the western North Pacific simulated in medium-resolution coupled general circulation models. Climate Dyn., 33, 665683, doi:10.1007/s00382-009-0593-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 401 197 17
PDF Downloads 246 156 22

An Empirical Relation between U.S. Tornado Activity and Monthly Environmental Parameters

View More View Less
  • 1 International Research Institute for Climate and Society, Columbia University, Palisades, New York, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia
  • | 2 Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York
  • | 3 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 4 International Research Institute for Climate and Society, Columbia University, Palisades, New York
Restricted access

Abstract

In previous work the authors demonstrated an empirical relation, in the form of an index, between U.S. monthly tornado activity and monthly averaged environmental parameters. Here a detailed comparison is made between the index and reported tornado activity. The index is a function of two environmental parameters taken from the North American Regional Reanalysis: convective precipitation (cPrcp) and storm relative helicity (SRH). Additional environmental parameters are considered for inclusion in the index, among them convective available potential energy, but their inclusion does not significantly improve the overall climatological performance of the index. The aggregate climatological dependence of reported monthly U.S. tornado numbers on cPrcp and SRH is well described by the index, although it fails to capture nonsupercell and cool season tornadoes. The contributions of the two environmental parameters to the index annual cycle and spatial distribution are examined with the seasonality of cPrcp (maximum during summer) relative to SRH (maximum in winter) accounting for the index peak value in May. The spatial distribution of SRH establishes the central U.S. “tornado alley” of the index, while the spatial distribution of cPrcp enhances index values in the South and Southeast and suppresses them west of the Rockies and over elevation. At the scale of the NOAA climate regions, the largest deficiency of the index climatology occurs over the central region where the index peak in spring is too low and where the late summer drop-off in the reported number of tornadoes is poorly captured. This index deficiency is related to its sensitivity to SRH, and increasing the index sensitivity to SRH improves the representation of the annual cycle in this region. The ability of the index to represent the interannual variability of the monthly number of U.S. tornadoes can be ascribed during most times of the year to interannual variations of cPrcp rather than of SRH. However, both factors are important during the peak spring period. The index shows some skill in representing the interannual variability of monthly tornado numbers at the scale of NOAA climate regions.

Corresponding author address: M. K. Tippett, International Research Institute for Climate and Society, The Earth Institute of Columbia University, Lamont Campus, 61 Route 9W, Palisades, NY 10964. E-mail: tippett@iri.columbia.edu

Abstract

In previous work the authors demonstrated an empirical relation, in the form of an index, between U.S. monthly tornado activity and monthly averaged environmental parameters. Here a detailed comparison is made between the index and reported tornado activity. The index is a function of two environmental parameters taken from the North American Regional Reanalysis: convective precipitation (cPrcp) and storm relative helicity (SRH). Additional environmental parameters are considered for inclusion in the index, among them convective available potential energy, but their inclusion does not significantly improve the overall climatological performance of the index. The aggregate climatological dependence of reported monthly U.S. tornado numbers on cPrcp and SRH is well described by the index, although it fails to capture nonsupercell and cool season tornadoes. The contributions of the two environmental parameters to the index annual cycle and spatial distribution are examined with the seasonality of cPrcp (maximum during summer) relative to SRH (maximum in winter) accounting for the index peak value in May. The spatial distribution of SRH establishes the central U.S. “tornado alley” of the index, while the spatial distribution of cPrcp enhances index values in the South and Southeast and suppresses them west of the Rockies and over elevation. At the scale of the NOAA climate regions, the largest deficiency of the index climatology occurs over the central region where the index peak in spring is too low and where the late summer drop-off in the reported number of tornadoes is poorly captured. This index deficiency is related to its sensitivity to SRH, and increasing the index sensitivity to SRH improves the representation of the annual cycle in this region. The ability of the index to represent the interannual variability of the monthly number of U.S. tornadoes can be ascribed during most times of the year to interannual variations of cPrcp rather than of SRH. However, both factors are important during the peak spring period. The index shows some skill in representing the interannual variability of monthly tornado numbers at the scale of NOAA climate regions.

Corresponding author address: M. K. Tippett, International Research Institute for Climate and Society, The Earth Institute of Columbia University, Lamont Campus, 61 Route 9W, Palisades, NY 10964. E-mail: tippett@iri.columbia.edu
Save