• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor.,4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, doi:10.1175/2011BAMS2856.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2011: CFMIP: Towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models. CLIVAR Exchanges, No. 56 (2), International CLIVAR Project Office, Southampton, United Kingdom, 20–22.

  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977, doi:10.1175/BAMS-85-7-967.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., R. George, R. Wood, G. Allen, D. Leon, and B. Albrecht, 2010: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20°S during VOCALS-REx. Atmos. Chem. Phys., 10, 10 639–10 654, doi:10.5194/acp- 10-10639-2010.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316337, doi:10.1002/jame.20019.

    • Search Google Scholar
    • Export Citation
  • Brient, F., and S. Bony, 2013: Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dyn .,40, 2415–2431, doi:10.1007/s00382-011-1279-7.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and S. A. Klein, 2010: Comment on “Observational and model evidence for positive low-level cloud feedback.” Science,329, 277, doi:10.1126/science.1186796.

  • Caldwell, P., and C. S. Bretherton, 2009: Response of a subtropical stratocumulus-capped mixed layer to climate and aerosol changes. J. Climate, 22, 2038, doi:10.1175/2008JCLI1967.1.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., Y. Zhang, and S. A. Klein, 2013: CMIP3 subtropical stratocumulus cloud feedback interpreted through a mixed-layer model. J. Climate, 26, 16071625, doi:10.1175/JCLI-D-12-00188.1.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67, 21712193, doi:10.1175/2010JAS3316.1.

    • Search Google Scholar
    • Export Citation
  • Clement, A., R. Burgman, and J. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., A. V. Maidens, S. F. Milton, R. A. Stratton, and M. R. Willett, 2011: Adaptive detrainment in a convective parameterization. Quart. J. Roy. Meteor. Soc., 137, 18561871, doi:10.1002/qj.875.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. C. Muñoz, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133, 22462261, doi:10.1175/MWR2972.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, C. T., A. Rosati, and R. Gudgel, 2000: Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate, 13, 22392260, doi:10.1175/1520-0442(2000)013<2239:TSOACM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev.,118, 1483–1506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev.,129, 357–377, doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2.

  • Gudgel, R. G., A. Rosati, and C. T. Gordon, 2001: The sensitivity of a coupled atmospheric–oceanic GCM to prescribed low-level clouds over the ocean and tropical landmasses. Mon. Wea. Rev., 129, 21032115, doi:10.1175/1520-0493(2001)129<2103:TSOACA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hannay, C., D. L. Williamson, J. J. Hack, J. T. Kiehl, J. G. Olson, S. A. Klein, C. S. Bretherton, and M. Köhler, 2009: Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL and ECMWF models. J. Climate, 22, 28712889, doi:10.1175/2008JCLI2479.1.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary layer diffusion in a global climate model. J. Climate,6, 1825–1842, doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn.,27, 787–813, doi:10.1007/s00382-006-0158-0.

  • Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev.,128, 3187–3199, doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Towards optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor.,17, 187–202, doi:10.1007/BF00117978.

  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9, 16351645, doi:10.1175/1520-0442(1996)009<1635:PSCATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. R. Bush, A. R. Brown, A. P. Lock, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev., 128, 32003217, doi:10.1175/1520-0493(2000)128<3200:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C., and Coauthors, 2014: Ocean–cloud–atmosphere–land interactions in the southeast Pacific: The VOCALS program. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, I. M. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991, doi:10.1175/2008JCLI1995.1.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., P. W. Heck, D. F. Young, C. W. Fairall, and J. B. Snider, 1992: Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE. J. Appl. Meteor., 31, 317339, doi:10.1175/1520-0450(1992)031<0317:SCPDFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107, 9941013, doi:10.1175/1520-0493(1979)107<0994:LSAODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Rep. NCAR/TN-486+STR, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Nigam, S., 1997: The annual warm to cold phase transition in the eastern equatorial Pacific: Diagnosis of the role of stratus cloud-top cooling. J. Climate, 10, 24472467, doi:10.1175/1520-0442(1997)010<2447:TAWTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Rep. 206, 41 pp.

  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Climate, 11, 369382, doi:10.1175/1520-0442(1998)011<0369:LCTOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection scheme and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate,22, 3449–3469, doi:10.1175/2008JCLI2557.1.

  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, doi:10.1175/JCLI-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2014: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., doi:10.1007/s00382-013-1945-z, in press.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Coakley, C. W. Fairall, R. A. Knopfli, and D. H. Lenschow, 1984: Outlook for research on marine subtropical stratocumulus clouds. Bull. Amer. Meteor. Soc., 65, 12901301, doi:10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and C. R. Mechoso, 2006: Orographic influences on the subtropical stratocumulus. J. Atmos. Sci., 63, 25852601, doi:10.1175/JAS3756.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of winds, temperature, and motion in the tropics. J. Atmos. Sci., 51, 22072224, doi:10.1175/1520-0469(1994)051<2207:IBOCTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2003: The TRMM Precipitation Radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524, doi:10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and J.-L. Lin, 2009: Interannual variability of the upper ocean in the southeast Pacific stratus cloud region. J. Climate, 22, 50725088, doi:10.1175/2009JCLI2696.1.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899927, doi:10.1002/qj.49711347710.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the earth’s radiation budget to changes is low clouds. Nature, 343, 4951, doi:10.1038/343049a0.

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate,17, 2466–2477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

  • Soden, B. J., and G. A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean–atmosphere models. Geophys. Res. Lett., 38, L12704, doi:10.1029/2011GL047632.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Meijgaard, E., and A. P. van Ulden, 1998: A first-order mixing–condensation scheme for nocturnal stratocumulus. Atmos. Res.,45, 253–273, doi:10.1016/S0169-8095(97)00080-X.

  • von Salzen, K., N. A. McFarlane, and M. Lazare, 2005: The role of shallow convection in the water and energy cycles of the atmosphere. Climate Dyn., 25, 671688, doi:10.1007/s00382-005-0051-2.

    • Search Google Scholar
    • Export Citation
  • Webb, M., C. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922, doi:10.1007/s003820100157.

    • Search Google Scholar
    • Export Citation
  • Webb, M., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2010: The PreVOCA experiment: Modeling the lower troposphere in the southeast Pacific. Atmos. Chem. Phys., 10, 47574774, doi:10.5194/acp-10-4757-2010.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and C. R. Mechoso, 1999: A discussion on the errors in the surface heat fluxes simulated by a coupled GCM. J. Climate, 12, 416426, doi:10.1175/1520-0442(1999)012<0416:ADOTEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute–Earth System Model version 1 (MRI-ESM1): Model description. MRI Tech. Rep. 64, 83 pp.

  • Zhang, M., and C. S. Bretherton, 2008: Mechanisms of low cloud climate feedback in idealized single-column simulations with the Community Atmospheric Model, version 3 (CAM3). J. Climate, 21, 48594878, doi:10.1175/2008JCLI2237.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., T. Shinoda, G. N. Kiladis, J.-L. Lin, E. J. Metzger, H. E. Hurlburt, and B. S. Giese, 2010: Upper-ocean processes under the stratus cloud deck in the southeast Pacific Ocean. J. Phys. Oceanogr., 40, 103120, doi:10.1175/2009JPO4213.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., T. Shinoda, J.-L. Lin, and G. N. Kiladis, 2011: Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J. Climate, 24, 41394164, doi:10.1175/2011JCLI4172.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and Coauthors, 2005: Intercomparison and interpretation of single-column model simulations of a nocturnal stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 133, 27412758, doi:10.1175/MWR2997.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., J. Hack, J. Kiehl, and C. S. Bretherton, 2007: Climate sensitivity of tropical and subtropical marine low clouds to ENSO and global warming due to doubling CO2. J. Geophys. Res.,112, D17108, doi:10.1029/2006JD008174.

  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110, D20206, doi:10.1029/2005JD005833.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., D. Leon, A. Pazmany and M. Cadeddu, 2012: Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx. Atmos. Chem. Phys., 12, 355369, doi:10.5194/acp-12-355-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 349 235 17
PDF Downloads 227 116 13

Stratocumulus Clouds in Southeastern Pacific Simulated by Eight CMIP5–CFMIP Global Climate Models

View More View Less
  • 1 Department of Geography, The Ohio State University, Columbus, Ohio
  • | 2 Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas
Restricted access

Abstract

This study examines the stratocumulus clouds and associated cloud feedback in the southeast Pacific (SEP) simulated by eight global climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and Cloud Feedback Model Intercomparison Project (CFMIP) using long-term observations of clouds, radiative fluxes, cloud radiative forcing (CRF), sea surface temperature (SST), and large-scale atmosphere environment. The results show that the state-of-the-art global climate models still have significant difficulty in simulating the SEP stratocumulus clouds and associated cloud feedback. Comparing with observations, the models tend to simulate significantly less cloud cover, higher cloud top, and a variety of unrealistic cloud albedo. The insufficient cloud cover leads to overly weak shortwave CRF and net CRF. Only two of the eight models capture the observed positive cloud feedback at subannual to decadal time scales. The cloud and radiation biases in the models are associated with 1) model biases in large-scale temperature structure including the lack of temperature inversion, insufficient lower troposphere stability (LTS), and insufficient reduction of LTS with local SST warming, and 2) improper model physics, especially insufficient increase of low cloud cover associated with larger LTS. The two models that arguably do best at simulating the stratocumulus clouds and associated cloud feedback are the only ones using cloud-top radiative cooling to drive boundary layer turbulence.

Corresponding author address: Jialin Lin, Department of Geography, The Ohio State University, 1036 Derby Hall, 154 North Oval Mall, Columbus, OH 43210. E-mail: lin.789@osu.edu

Abstract

This study examines the stratocumulus clouds and associated cloud feedback in the southeast Pacific (SEP) simulated by eight global climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and Cloud Feedback Model Intercomparison Project (CFMIP) using long-term observations of clouds, radiative fluxes, cloud radiative forcing (CRF), sea surface temperature (SST), and large-scale atmosphere environment. The results show that the state-of-the-art global climate models still have significant difficulty in simulating the SEP stratocumulus clouds and associated cloud feedback. Comparing with observations, the models tend to simulate significantly less cloud cover, higher cloud top, and a variety of unrealistic cloud albedo. The insufficient cloud cover leads to overly weak shortwave CRF and net CRF. Only two of the eight models capture the observed positive cloud feedback at subannual to decadal time scales. The cloud and radiation biases in the models are associated with 1) model biases in large-scale temperature structure including the lack of temperature inversion, insufficient lower troposphere stability (LTS), and insufficient reduction of LTS with local SST warming, and 2) improper model physics, especially insufficient increase of low cloud cover associated with larger LTS. The two models that arguably do best at simulating the stratocumulus clouds and associated cloud feedback are the only ones using cloud-top radiative cooling to drive boundary layer turbulence.

Corresponding author address: Jialin Lin, Department of Geography, The Ohio State University, 1036 Derby Hall, 154 North Oval Mall, Columbus, OH 43210. E-mail: lin.789@osu.edu
Save