• Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, doi:10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294 (5542), 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135 (644), 16611672, doi:10.1002/qj.479.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2003: Evidence for nonlinear climate change: Two stratospheric regimes and a regime shift. J. Climate, 16, 36813690, doi:10.1175/1520-0442(2003)016<3681:EFNCCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 50295060, doi:10.1002/jgrd.50316.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., S. Solomon, and P. Lin, 2010: On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos. Chem. Phys., 10, 26432653, doi:10.5194/acp-10-2643-2010.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2012: Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull. Amer. Meteor. Soc., 93, 845859, doi:10.1175/BAMS-D-11-00145.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., K. K. Tung, and J. Liu, 2005: A closer comparison of early and late-winter atmospheric trends in the Northern Hemisphere. J. Climate, 18, 32043216, doi:10.1175/JCLI3468.1.

    • Search Google Scholar
    • Export Citation
  • Julian, P. R., and K. B. Labitzke, 1965: A study of atmospheric energetics during the January–February 1963 stratospheric warming. J. Atmos. Sci., 22, 597610, doi:10.1175/1520-0469(1965)022<0597:ASOAED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuttippurath, J., and G. Nikulin, 2012: A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004-2009/2010. Atmos. Chem. Phys., 12, 81158129, doi:10.5194/acp-12-8115-2012.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., K. Krüger, J. L. Sabutis, S. A. Sena, and S. Pawson, 2005: The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2011: Unprecedented Arctic ozone loss in 2011. Nature, 478, 469475, doi:10.1038/nature10556.

  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, doi:10.1175/JCLI-D-12-00030.1.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., J. S. Daniel, D. W. Waugh, and E. R. Nash, 2007: A new formulation of equivalent effective stratospheric chlorine (EESC). Atmos. Chem. Phys., 7, 45374552, doi:10.5194/acp-7-4537-2007.

    • Search Google Scholar
    • Export Citation
  • Quiroz, R. S., 1977: The tropospheric-stratospheric polar vortex breakdown of January 1977. Geophys. Res. Lett., 4, 151154, doi:10.1029/GL004i004p00151.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 14671479, doi:10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., J. Kim, E. Manzini, and J. Kröger, 2012: A stratospheric connection to Atlantic climate variability. Nat. Geosci., 5 (11), 783787, doi:10.1038/ngeo1586.

    • Search Google Scholar
    • Export Citation
  • Rex, M., and Coauthors, 2006: Arctic winter 2005: Implications for stratospheric ozone loss and climate change. Geophys. Res. Lett., 33, L23808, doi:10.1029/2006GL026731.

    • Search Google Scholar
    • Export Citation
  • Rieder, H. E., and L. M. Polvani, 2013: Are recent Arctic ozone losses caused by increasing greenhouse gases? Geophys. Res. Lett., 40, 44374441, doi:10.1002/grl.50835.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, doi:10.1029/1999JD901105.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, doi:10.1029/2005GL023226.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Sheperd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6 (2), 98102, doi:10.1038/ngeo1698.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 (5569), 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2005: Recent stratospheric climate trends as evidenced in radiosonde data: Global structure and tropospheric linkages. J. Climate, 18, 47854795, doi:10.1175/JCLI3585.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, doi:10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and S. Solomon, 2005: Stratosphere-troposphere coupling in the Southern Hemisphere. J. Atmos. Sci., 62, 708715, doi:10.1175/JAS-3321.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4 (11), 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H. Coleman, and P. Brohan, 2005: Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res., 110, D18105, doi:10.1029/2004JD005753.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., W. J. Randel, S. Pawson, P. A. Newman, and E. R. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104, 27 19127 201, doi:10.1029/1999JD900795.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136 (649), 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 88 53 0
PDF Downloads 52 31 0

On the Identification of the Downward Propagation of Arctic Stratospheric Climate Change over Recent Decades

View More View Less
  • 1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

Dynamical coupling between the stratospheric and tropospheric circumpolar circulations in the Arctic has been widely documented on month-to-month and interannual time scales, but not on longer time scales. In the Antarctic, both short- and long-term coupling extending from the stratosphere to the surface has been identified. In this study, changes in Arctic temperature, geopotential height, and ozone observed since the satellite era began in 1979 are examined, comparing dynamically quiescent years in which major sudden stratospheric warmings did not occur to all years. It is shown that this approach clarifies the behavior for years without major warmings and that dynamically quiescent years are marked by a strengthening of the Arctic polar vortex over the past 30 years. The associated declines in stratospheric temperatures, geopotential height, and ozone are qualitatively similar to those obtained in the Antarctic (albeit weaker), and propagate downward into the Arctic lowermost stratosphere during late winter and early spring. In sharp contrast to the Antarctic, the strengthening of the Arctic stratospheric vortex appears to originate at a higher altitude, and the propagation to the Arctic troposphere is both very limited and confined to the uppermost troposphere, even when only dynamically quiescent years are considered in the analysis.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00445.s1.

Corresponding author address: Diane J. Ivy, Massachusetts Institute of Technology, 77 Massachusetts Ave., 54-1710, Cambridge, MA 02139. E-mail: divy@mit.edu

Abstract

Dynamical coupling between the stratospheric and tropospheric circumpolar circulations in the Arctic has been widely documented on month-to-month and interannual time scales, but not on longer time scales. In the Antarctic, both short- and long-term coupling extending from the stratosphere to the surface has been identified. In this study, changes in Arctic temperature, geopotential height, and ozone observed since the satellite era began in 1979 are examined, comparing dynamically quiescent years in which major sudden stratospheric warmings did not occur to all years. It is shown that this approach clarifies the behavior for years without major warmings and that dynamically quiescent years are marked by a strengthening of the Arctic polar vortex over the past 30 years. The associated declines in stratospheric temperatures, geopotential height, and ozone are qualitatively similar to those obtained in the Antarctic (albeit weaker), and propagate downward into the Arctic lowermost stratosphere during late winter and early spring. In sharp contrast to the Antarctic, the strengthening of the Arctic stratospheric vortex appears to originate at a higher altitude, and the propagation to the Arctic troposphere is both very limited and confined to the uppermost troposphere, even when only dynamically quiescent years are considered in the analysis.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00445.s1.

Corresponding author address: Diane J. Ivy, Massachusetts Institute of Technology, 77 Massachusetts Ave., 54-1710, Cambridge, MA 02139. E-mail: divy@mit.edu

Supplementary Materials

    • Supplemental Materials (PDF 22.41 MB)
Save