• Allen, M. R., P. A. Stott, J. F. B. Mitchell, R. Schnur, and T. L. Delworth, 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407, 617620, doi:10.1038/35036559.

    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: Deep ocean heat uptake as a major source of spread in transient climate change simulations. Geophys. Res. Lett.,36, L22701, doi:10.1029/2009GL040845.

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Collins, M., B. B. B. Booth, B. Bhaskaran, G. R. Harris, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2011: Climate model errors, feedbacks and forcings: A comparison of perturbed physics and multimodel ensembles. Climate Dyn., 36, 17371766, doi:10.1007/s00382-010-0808-0.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and P. Viterbo, 2006: The European summer of 2003: Sensitivity to soil water initial conditions. J. Climate, 19, 36593680, doi:10.1175/JCLI3810.1.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res.,113, D23105, doi:10.1029/2008JD010405.

  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Harris, G. R., D. M. Sexton, B. B. Booth, M. Collins, and J. M. Murphy, 2013: Probabilistic projections of transient climate change. Climate Dyn., 40, 29372972, doi:10.1007/s00382-012-1647-y.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett.,39, L01702, doi:10.1029/2011GL050087.

  • Ho, C. K., E. Hawkins, L. Shaffrey, J. Bröcker, L. Hermanson, J. M. Murphy, D. M. Smith, and R. Eade, 2013: Examining reliability of seasonal to decadal sea surface temperature forecasts: The role of ensemble dispersion. Geophys. Res. Lett., 40, 5770–5775, doi:10.1002/2013GL057630.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and L. Tomassini, 2008: Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophys. Res. Lett.,35, L09701, doi:10.1029/2007GL032904.

  • Masson, D., and R. Knutti, 2013: Predictor screening, calibration, and observational constraints in climate model ensembles: An illustration using climate sensitivity. J. Climate, 26, 887898, doi:10.1175/JCLI-D-11-00540.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485, doi:10.1175/2009BAMS2778.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., in press.

  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophy. Res.,117, D08101, doi:10.1029/2011JD017187.

  • Murphy, D. M., 2010: Constraining climate sensitivity with linear fits to outgoing radiation. Geophys. Res. Lett.,37, L09704, doi:10.1029/2010GL042911.

  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Oreskes, N., D. A. Stainforth, and L. A. Smith, 2010: Adaptation to global warming: Do climate models tell us what we need to know? Philos. Sci., 77 (5), 10121028, doi:10.1086/657428.

    • Search Google Scholar
    • Export Citation
  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, doi:10.1038/ngeo1836.

  • Pohlmann, H., J. Jungclaus, A. Kohl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938, doi:10.1175/2009JCLI2535.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Raper, S. C. B., J. M. Gregory, and R. J. Stouffer, 2002: The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Climate, 15, 124130, doi:10.1175/1520-0442(2002)015<0124:TROCSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robson, J. I., 2010: Understanding the performance of a decadal prediction system. Ph.D. thesis, University of Reading, Reading, United Kingdom, 233 pp.

  • Robson, J. I., R. T. Sutton, and D. M. Smith, 2012: Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid-1990s. Geophys. Res. Lett.,39, L19713, doi:10.1029/2012GL053370.

  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. Scaife, 2010: Skillful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, doi:10.1038/ngeo1004.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2013: Real-time multimodel decadal climate predictions. Climate Dyn., 41, 2875–2888, doi:10.1007/s00382-012-1600-0.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coeditors, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, Cambridge University Press, 3–28.

  • Stott, P. A., and C. E. Forest, 2007: Review: Ensemble climate predictions using climate models and observational constraints. Philos. Trans. Roy. Soc. A, 365, 20292052, doi:10.1098/rsta.2007.2075.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tett, S., D. Rowlands, M. Mineter, and C. Cartis, 2013: Can top-of-atmosphere radiation measurements constrain climate predictions? Part II: Climate sensitivity. J. Climate, 26, 9367–9383, doi:10.1175/JCLI-D-12-00596.1.

    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and S. Woolnough, 2013: Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Climate Dyn., doi: 10.1007/s00382-013-1691-2, in press.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multimodel ensemble. Climate Dyn., 38, 12631280, doi:10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189, doi:10.1175/JCLI-D-11-00595.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 44 1
PDF Downloads 55 24 2

The Interpretation and Use of Biases in Decadal Climate Predictions

View More View Less
  • 1 NCAS-Climate, Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 Met Office Hadley Centre, Exeter, United Kingdom
Restricted access

Abstract

Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts.

The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.

Denotes Open Access content.

Corresponding author address: Ed Hawkins, Department of Meteorology, University of Reading, Reading, RG6 6BB, United Kingdom. E-mail: e.hawkins@reading.ac.uk

Abstract

Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts.

The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.

Denotes Open Access content.

Corresponding author address: Ed Hawkins, Department of Meteorology, University of Reading, Reading, RG6 6BB, United Kingdom. E-mail: e.hawkins@reading.ac.uk
Save