• Abe, M., T. Yasunari, and A. Kitoh, 2004: Effects of large-scale orography on the coupled atmosphere–ocean system in the tropical Indian and Pacific Oceans in boreal summer. J. Meteor. Soc. Japan, 82, 745759, doi:10.2151/jmsj.2004.745.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., P. Kållberg, S. Kobayashi, D. Dee, S. Uppala, A. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, doi:10.1002/qj.864.

    • Search Google Scholar
    • Export Citation
  • Chen, T., and C. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (meiyu) over southeastern China and Japan. Mon. Wea. Rev., 108, 942953, doi:10.1175/1520-0493(1980)108<0942:TSAVBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Climate, 16, 406425, doi:10.1175/1520-0442(2003)016<0406:MLTNEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. Neelin, and H. Su, 2001: Ocean–atmosphere–land feedbacks in an idealized monsoon. Quart. J. Roy. Meteor. Soc., 127, 18691891, doi:10.1002/qj.49712757602.

    • Search Google Scholar
    • Export Citation
  • Dao, S., and L. Chen, 1957: The structure of general circulation over the continent of Asia in summer. J. Meteor. Soc. Japan,35, 215–229.

  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dima, I., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 15221527, doi:10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373396.

  • Ding, Y., and J. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, doi:10.1256/qj.01.211.

    • Search Google Scholar
    • Export Citation
  • Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 75, 180186.

  • Gao, H., and S. Yang, 2009: A severe drought event in northern China in winter 2008–2009 and the possible influences of La Niña and Tibetan Plateau. J. Geophys. Res.,114, D24104, doi:10.1029/2009JD012430.

  • Gao, H., S. Yang, A. Kumar, Z. Hu, B. Huang, Y. Li, and B. Jha, 2011: Variations of the East Asian meiyu and simulation and prediction by the NCEP climate forecast system. J. Climate, 24, 94108, doi:10.1175/2010JCLI3540.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hirahara, S., H. Ohno, Y. Oikawa, and S. Maeda, 2012: Strengthening of the southern side of the jet stream and delayed withdrawal of Baiu season in future climate . J. Meteor. Soc. Japan,90, 663671.

    • Search Google Scholar
    • Export Citation
  • Hsu, P., T. Li, H. Murakami, and A. Kitoh, 2013: Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res., 18, 12471260, doi:10.1002/jgrd.50145.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., R. Adler, M. Morrissey, D. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, doi:10.1175/JAS-D-12-082.1.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 2004: Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere–ocean GCM. J. Climate, 17, 783802, doi:10.1175/1520-0442(2004)017<0783:EOMUOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y.-M., 1992: Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ and the SACZ). Part I: Characteristics of subtropical frontal zones. J. Meteor. Soc. Japan, 70, 813836.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., S. Sundaram, P. Swapna, V. Kumar, D. Ayantika, and M. Mujumdar, 2011: The crucial role of ocean–atmosphere coupling on the Indian monsoon anomalous response during dipole events. Climate Dyn., 37, 117, doi:10.1007/s00382-010-0830-2.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., L. Cheng, and R. A. Anthes, 1986: Mesoscale analyses of the Sichuan flood catastrophe, 11–15 July 1981. Mon. Wea. Rev., 114, 19842003, doi:10.1175/1520-0493(1986)114<1984:MAOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358375, doi:10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Z.-Y. Yin, 2002: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol., 183, 223245, doi:10.1016/S0031-0182(01)00488-6.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and T. Schneider, 2010: Atmospheric dynamics of Earth-like tidally locked aquaplanets. J. Adv. Model. Earth Syst., 2 (13), doi:10.3894/JAMES.2010.2.13.

    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. Boos, and D. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, doi:10.1146/annurev-earth-040809-152456.

    • Search Google Scholar
    • Export Citation
  • Neelin, J., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 267–301.

  • Ninomiya, K., 1984: Characteristics of Baiu front as a predominant subtropical front in the summer Northern Hemisphere. J. Meteor. Soc. Japan, 62, 880894.

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., and T. Murakami, 1987: The early summer rainy season (Baiu) over Japan. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 93–121.

  • Park, H., J. Chiang, and S. Bordoni, 2012: Mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoon. J. Climate, 25, 23942407, doi:10.1175/JCLI-D-11-00281.1.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Rodwell, M., and B. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M., and B. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, doi:10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saito, N., 1985: Quasi-stationary waves in mid-latitudes and the Baiu in Japan. J. Meteor. Soc. Japan, 63, 983995.

  • Sampe, T., and S. Xie, 2010: Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, doi:10.1175/2009JCLI3128.1.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, doi:10.1175/2008JCLI2625.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 13171340, doi:10.1175/1520-0469(2004)061<1317:TTATTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 14031420, doi:10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. M. B. Tignor, and H. L. Miller Jr., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Suda, K., and T. Asakura, 1955: A study on the unusual “Baiu” season in 1954 by means of Northern Hemisphere upper air mean charts. J. Meteor. Soc. Japan, 33, 112.

    • Search Google Scholar
    • Export Citation
  • Tao, S., 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Trenberth, K. E., J. W. Hurrell, and D. P. Stepaniak, 2006: The Asian monsoon: Global perspectives. The Asian Monsoon, B. Wang, Ed., Springer Praxis, 67–87.

  • Waliser, D. E., 2006: Intraseasonal variability. The Asian Monsoon, B. Wang, Ed., Springer Praxis, 203–257.

  • Wang, B., 1987: The development mechanism for Tibetan Plateau warm vortices. J. Atmos. Sci., 44, 29782994, doi:10.1175/1520-0469(1987)044<2978:TDMFTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Springer Praxis, 787 pp.

  • Wang, W., Y.-H. Kuo, and T. T. Warner, 1993: A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau. Mon. Wea. Rev., 121, 25422561, doi:10.1175/1520-0493(1993)121<2542:ADDMVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P., 1987: The elementary monsoon. Monsoons, J. S. Fein and P. L. Stephens, Eds., John Wiley and Sons, 3–32.

  • Webster, P., and J. Fasullo, 2003: Monsoon: Dynamical theory. Encyclopedia of Atmospheric Sciences, Vol. 3, Academic Press, 1370–1391.

  • Wu, G., W. Li, H. Guo, H. Liu, J. Xue, and Z. Wang, 1997: Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian summer monsoon. Collections in the Memory of Zhao Jiuzhang, Y. Duzheng, Ed., Chinese Science Press, 116–126.

  • Wu, G., L. Sun, Y. Liu, H. Liu, S. Sun, and W. Li, 2002: Impacts of land surface processes on summer climate. Selected Papers of the Fourth Conference on East Asia and Western Pacific Meteorology and Climate, C. P. Chang et al., Eds., World Scientific, 64–76.

  • Wu, G., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, doi:10.1175/JHM609.1.

    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and G. Wu, 2006: Effects of the Tibetan Plateau. The Asian Monsoon, B. Wang, Ed., Springer Praxis, 513–549.

  • Yang, S., and W. K.-M. Lau, 2006: Interannual variability of the Asian monsoon. The Asian Monsoon, B. Wang, Ed., Springer Praxis, 259–293.

  • Yeh, T. C., S. W. Lo, and E. C. Chu, 1957: On the heat balance and circulation structure in the troposphere over the Tibetan Plateau and its vicinity. Acta Meteor. Sin., 28, 108121.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 690 419 27
PDF Downloads 590 350 23

Orographic Effects of the Tibetan Plateau on the East Asian Summer Monsoon: An Energetic Perspective

View More View Less
  • 1 California Institute of Technology, Pasadena, California
Restricted access

Abstract

This paper investigates the dynamical processes through which the Tibetan Plateau (TP) influences the East Asian summer monsoon (EASM) within the framework of the moist static energy (MSE) budget, using both observations and atmospheric general circulation model (AGCM) simulations. The focus is on the most prominent feature of the EASM, the so-called meiyu–baiu (MB), which is characterized by a well-defined, southwest–northeast elongated quasi-stationary rainfall band, spanning from eastern China to Japan and into the northwestern Pacific Ocean between mid-June and mid-July.

Observational analyses of the MSE budget of the MB front indicate that horizontal advection of moist enthalpy, and primarily of dry enthalpy, sustains the front in a region of otherwise negative net energy input into the atmospheric column. A decomposition of the horizontal dry enthalpy advection into mean, transient, and stationary eddy fluxes identifies the longitudinal thermal gradient due to zonal asymmetries and the meridional stationary eddy velocity as the most influential factors determining the pattern of horizontal moist enthalpy advection. Numerical simulations in which the TP is either retained or removed show that the TP influences the stationary enthalpy flux, and hence the MB front, primarily by changing the meridional stationary eddy velocity, with reinforced southerly wind over the MB region and northerly wind to its north. Changes in the longitudinal thermal gradient are mainly confined to the near downstream of the TP, with the resulting changes in zonal warm air advection having a lesser impact on the rainfall in the extended MB region.

Corresponding author address: Jinqiang Chen, M.C.131-24, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: jcchen@gps.caltech.edu

Abstract

This paper investigates the dynamical processes through which the Tibetan Plateau (TP) influences the East Asian summer monsoon (EASM) within the framework of the moist static energy (MSE) budget, using both observations and atmospheric general circulation model (AGCM) simulations. The focus is on the most prominent feature of the EASM, the so-called meiyu–baiu (MB), which is characterized by a well-defined, southwest–northeast elongated quasi-stationary rainfall band, spanning from eastern China to Japan and into the northwestern Pacific Ocean between mid-June and mid-July.

Observational analyses of the MSE budget of the MB front indicate that horizontal advection of moist enthalpy, and primarily of dry enthalpy, sustains the front in a region of otherwise negative net energy input into the atmospheric column. A decomposition of the horizontal dry enthalpy advection into mean, transient, and stationary eddy fluxes identifies the longitudinal thermal gradient due to zonal asymmetries and the meridional stationary eddy velocity as the most influential factors determining the pattern of horizontal moist enthalpy advection. Numerical simulations in which the TP is either retained or removed show that the TP influences the stationary enthalpy flux, and hence the MB front, primarily by changing the meridional stationary eddy velocity, with reinforced southerly wind over the MB region and northerly wind to its north. Changes in the longitudinal thermal gradient are mainly confined to the near downstream of the TP, with the resulting changes in zonal warm air advection having a lesser impact on the rainfall in the extended MB region.

Corresponding author address: Jinqiang Chen, M.C.131-24, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125. E-mail: jcchen@gps.caltech.edu
Save