• Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Climate, 23, 38883906, doi:10.1175/2010JCLI3297.1.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., K. M. Shell, P. R. Gent, D. A. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate,25, 3053–3070, doi:10.1175/JCLI-D-11-00290.1.

  • Boer, G. J., 2011: The ratio of land to ocean temperature change under global warming. Climate Dyn., 37, 22532270, doi:10.1007/s00382-011-1112-3.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and B. Yu, 2003: Climate sensitivity and climate response. Climate Dyn., 20, 415429, doi:10.1007/s00382-002-0283-3.

  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and J. Lu, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Climate Dyn., 32, 887–900, doi:10.1007/s00382-008-0424-4.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and K.-K. Tung, 2012: Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2×CO2 experiments in an idealized GCM. J. Atmos. Sci., 69, 22562271, doi:10.1175/JAS-D-11-0117.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161, doi:10.1175/JCLI3760.1.

    • Search Google Scholar
    • Export Citation
  • Colman, R., 2002: Geographical contributions to global climate sensitivity in a general circulation model. Global Planet. Change, 32, 211243, doi:10.1016/S0921-8181(01)00142-4.

    • Search Google Scholar
    • Export Citation
  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865873, doi:10.1007/s00382-003-0310-z.

    • Search Google Scholar
    • Export Citation
  • Colman, R., and B. J. McAvaney, 1997: A study of general circulation model climate feedbacks determined from perturbed SST experiments. J. Geophys. Res., 102, 19 38319 402, doi:10.1029/97JD00206.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and C. L. Parkinson, 2004: Satellite observed changes in the Arctic. Phys. Today, 57, 3844, doi:10.1063/1.1801866.

  • Compo, G. P., and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Climate Dyn., 32, 333342, doi:10.1007/s00382-008-0448-9.

    • Search Google Scholar
    • Export Citation
  • Crook, J. A., P. M. Forster, and N. Stuber, 2011: Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Climate, 24, 35753592, doi:10.1175/2011JCLI3863.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and P. R. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 24942499, doi:10.1175/2008JCLI2596.1.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science,330, 1523–1527, doi:10.1126/science.1192546.

  • Dong, B., J. Gregory, and R. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, doi:10.1175/2009JCLI2652.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Kiehl, K. T., C. A. Shields, J. J. Hack, and W. D. Collins, 2006: The climate sensitivity of the Community Climate System Model version 3 (CCSM3). J. Climate, 19, 25842596, doi:10.1175/JCLI3747.1.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., T. Boyer, M. Conkright, D. Johnson, T. O’Brien, J. Antonov, C. Stephens, and R. Gelfeld, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Lu, J., and M. Cai, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32, 873885, doi:10.1007/s00382-008-0425-3.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 748–845.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Shell, K. M., J. T. Kiehl, and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedback in NCAR’s community atmospheric model. J. Climate, 21, 22692282, doi:10.1175/2007JCLI2044.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. Shell, and J. T. Kiehl, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–91.

  • Sutton, R. T., B.-W. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., R. G. Ellingson, and M. Cai, 2011: Geographical distribution of climate feedbacks in the NCAR CCSM3.0. J. Climate, 24, 27372753, doi:10.1175/2010JCLI3788.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., M. Cai, A. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 7023–7043, doi:10.1175/JCLI-D-12-00696.1.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971415, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Surface albedo feedback estimate for the AR4 climate models. J. Climate, 19, 359365, doi:10.1175/JCLI3624.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 20 1
PDF Downloads 38 17 1

Characterizing the Climate Feedback Pattern in the NCAR CCSM3-SOM Using Hourly Data

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
  • | 2 The Florida State University, Tallahassee, Florida
Restricted access

Abstract

The climate feedback–response analysis method (CFRAM) was applied to 10-yr hourly output of the NCAR Community Climate System Model, version 3, using the slab ocean model (CCSM3-SOM), to analyze the strength and spatial distribution of climate feedbacks and to characterize their contributions to the global and regional surface temperature Ts changes in response to a doubling of CO2. The global mean bias in the sum of partial Ts changes associated with the CO2 forcing, and each feedback derived with the CFRAM analysis is about 2% of Ts change obtained directly from the CCSM3-SOM simulations. The pattern correlation between the two is 0.94, indicating that the CFRAM analysis using hourly model output is accurate and thus is appropriate for quantifying the contributions of climate feedback to the formation of global and regional warming patterns. For global mean Ts, the largest contributor to the warming is water vapor feedback, followed by the direct CO2 forcing and albedo feedback. The albedo feedback exhibits the largest spatial variation, followed by shortwave cloud feedback. In terms of pattern correlation and RMS difference with the modeled global surface warming, longwave cloud feedback contributes the most. On zonal average, albedo feedback is the largest contributor to the stronger warming in high latitudes than in the tropics. The longwave cloud feedback further amplifies the latitudinal warming contrast. Both the land–ocean warming difference and contributions of climate feedbacks to it vary with latitude. Equatorward of 50°, shortwave cloud feedback and dynamical advection are the two largest contributors. The land–ocean warming difference on the hemispheric scale is mainly attributable to longwave cloud feedback and convection.

Corresponding author address: Dr. Xiaoliang Song, Scripps Institution of Oceanography, La Jolla, CA, 92093-0221. E-mail: xisong@ucsd.edu

Abstract

The climate feedback–response analysis method (CFRAM) was applied to 10-yr hourly output of the NCAR Community Climate System Model, version 3, using the slab ocean model (CCSM3-SOM), to analyze the strength and spatial distribution of climate feedbacks and to characterize their contributions to the global and regional surface temperature Ts changes in response to a doubling of CO2. The global mean bias in the sum of partial Ts changes associated with the CO2 forcing, and each feedback derived with the CFRAM analysis is about 2% of Ts change obtained directly from the CCSM3-SOM simulations. The pattern correlation between the two is 0.94, indicating that the CFRAM analysis using hourly model output is accurate and thus is appropriate for quantifying the contributions of climate feedback to the formation of global and regional warming patterns. For global mean Ts, the largest contributor to the warming is water vapor feedback, followed by the direct CO2 forcing and albedo feedback. The albedo feedback exhibits the largest spatial variation, followed by shortwave cloud feedback. In terms of pattern correlation and RMS difference with the modeled global surface warming, longwave cloud feedback contributes the most. On zonal average, albedo feedback is the largest contributor to the stronger warming in high latitudes than in the tropics. The longwave cloud feedback further amplifies the latitudinal warming contrast. Both the land–ocean warming difference and contributions of climate feedbacks to it vary with latitude. Equatorward of 50°, shortwave cloud feedback and dynamical advection are the two largest contributors. The land–ocean warming difference on the hemispheric scale is mainly attributable to longwave cloud feedback and convection.

Corresponding author address: Dr. Xiaoliang Song, Scripps Institution of Oceanography, La Jolla, CA, 92093-0221. E-mail: xisong@ucsd.edu
Save