The Origin and Limits of the Near Proportionality between Climate Warming and Cumulative CO2 Emissions

Andrew H. MacDougall School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Andrew H. MacDougall in
Current site
Google Scholar
PubMed
Close
and
Pierre Friedlingstein College of Engineering Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by Pierre Friedlingstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The transient climate response to cumulative CO2 emissions (TCRE) is a useful metric of climate warming that directly relates the cause of climate change (cumulative carbon emissions) to the most used index of climate change (global mean near-surface temperature change). In this paper, analytical reasoning is used to investigate why TCRE is near constant over a range of cumulative emissions up to 2000 Pg of carbon. In addition, a climate model of intermediate complexity, forced with a constant flux of CO2 emissions, is used to explore the effect of terrestrial carbon cycle feedback strength on TCRE. The analysis reveals that TCRE emerges from the diminishing radiative forcing from CO2 per unit mass being compensated for by the diminishing ability of the ocean to take up heat and carbon. The relationship is maintained as long as the ocean uptake of carbon, which is simulated to be a function of the CO2 emissions rate, dominates changes in the airborne fraction of carbon. Strong terrestrial carbon cycle feedbacks have a dependence on the rate of carbon emission and, when present, lead to TRCE becoming rate dependent. Despite these feedbacks, TCRE remains roughly constant over the range of the representative concentration pathways and therefore maintains its primary utility as a metric of climate change.

Current affiliation: Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland.

Corresponding author address: Andrew H. MacDougall, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland. E-mail: andrew.macdougall@env.ethz.ch

Abstract

The transient climate response to cumulative CO2 emissions (TCRE) is a useful metric of climate warming that directly relates the cause of climate change (cumulative carbon emissions) to the most used index of climate change (global mean near-surface temperature change). In this paper, analytical reasoning is used to investigate why TCRE is near constant over a range of cumulative emissions up to 2000 Pg of carbon. In addition, a climate model of intermediate complexity, forced with a constant flux of CO2 emissions, is used to explore the effect of terrestrial carbon cycle feedback strength on TCRE. The analysis reveals that TCRE emerges from the diminishing radiative forcing from CO2 per unit mass being compensated for by the diminishing ability of the ocean to take up heat and carbon. The relationship is maintained as long as the ocean uptake of carbon, which is simulated to be a function of the CO2 emissions rate, dominates changes in the airborne fraction of carbon. Strong terrestrial carbon cycle feedbacks have a dependence on the rate of carbon emission and, when present, lead to TRCE becoming rate dependent. Despite these feedbacks, TCRE remains roughly constant over the range of the representative concentration pathways and therefore maintains its primary utility as a metric of climate change.

Current affiliation: Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland.

Corresponding author address: Andrew H. MacDougall, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland. E-mail: andrew.macdougall@env.ethz.ch
Save
  • Allen, M. R., and T. F. Stocker, 2014: Impact of delay in reducing carbon dioxide emissions. Nat. Climate Change, 4, 23–26, doi:10.1038/nclimate2077.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., D. J. Frame, C. Huntingford, C. D. Jones, J. A. Lowe, M. Meinshausen, and N. Meinshausen, 2009: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458, 11631166, doi:10.1038/nature08019.

    • Search Google Scholar
    • Export Citation
  • Archer, D., 1996: A data-driven model of the global calcite lysocline. Global Biogeochem. Cycles, 10, 511526, doi:10.1029/96GB01521.

  • Avis, C. A., A. J. Weaver, and K. J. Meissner, 2011: Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nat. Geosci., 4, 444448, doi:10.1038/ngeo1160.

    • Search Google Scholar
    • Export Citation
  • Boden, T., G. Marland, and B. Andres, 2011: Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2008. Carbon Dioxide Information Analysis Center, doi:10.3334/CDIAC/00001_V2013.

  • Carslaw, H. S., and J. C. Jaeger, 1986: Conduction of Heat in Solids. Oxford University Press, 510 pp.

  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_Chapter12_FINAL.pdf.]

  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2002: Modelling vegetation and the carbon cycle as interactive elements of the climate system. Meteorology at the Millennium, R. P. Peace, Ed., International Geophysics Series, Vol. 83, Academic Press, 259–279, doi:10.1016/S0074-6142(02)80172-3.

  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, doi:10.1175/JCLI3800.1.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Climate, 26, 68446858, doi:10.1175/JCLI-D-12-00476.1.

    • Search Google Scholar
    • Export Citation
  • Gradshteyn, I. S., and I. M. Ryzhik, 2000: Table of Integrals, Series, and Products. 6th ed. A. Jeffrey and D. Zwillinger, Eds., Academic Press, 1163 pp.

  • Gregory, J. M., and P. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105, doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., C. D. Jones, P. Cadule, and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 52325250, doi:10.1175/2009JCLI2949.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res.,102, 6831–6864, doi:10.1029/96JD03436.

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp. [Available online at http://www.ipcc.ch/ipccreports/tar/wg1/.]

  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1–29. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SPM_FINAL.pdf.]

  • MacDougall, A. H., C. A. Avis, and A. J. Weaver, 2012: Significant contribution to climate warming from the permafrost carbon feedback. Nat. Geosci., 5, 719721, doi:10.1038/ngeo1573.

    • Search Google Scholar
    • Export Citation
  • MacDougall, A. H., M. Eby, and A. J. Weaver, 2013: If anthropogenic CO2 emissions cease, will atmospheric CO2 concentration continue to increase? J. Climate, 26, 95639576, doi:10.1175/JCLI-D-12-00751.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., and A. J. Weaver, 2010: Committed climate warming. Nat. Geosci., 3, 142143, doi:10.1038/ngeo813.

  • Matthews, H. D., A. J. Weaver, K. J. Meissner, N. P. Gillett, and M. Eby, 2004: Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dyn., 22, 461479, doi:10.1007/s00382-004-0392-2.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., N. P. Gillett, P. A. Stott, and K. Zickfeld, 2009: The proportionality of global warming to cumulative carbon emissions. Nature, 459, 829832, doi:10.1038/nature08047.

    • Search Google Scholar
    • Export Citation
  • Meissner, K. J., A. J. Weaver, H. D. Matthews, and P. M. Cox, 2003: The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model. Climate Dyn., 21, 515537, doi:10.1007/s00382-003-0352-2.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Orr, J., R. Najjar, C. Sabine, and F. Joos, 1999: Abiotic-HOWTO. OCMIP Tech. Rep., LSCE/CEA Saclay, Gif-surYvette, France, 15 pp.

  • Planton, S., Ed., 2013: Annex III: Glossary. Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1447–1465. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_AnnexIII_FINAL.pdf.]

  • Raper, S. C. B., J. M. Gregory, and R. J. Stouffer, 2002: The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Climate, 15, 124130, doi:10.1175/1520-0442(2002)015<0124:TROCSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raupach, M., 2013: The exponential eigenmodes of the carbon–climate system, and their implications for ratios of responses to forcings. Earth Syst. Dyn., 4, 3149, doi:10.5194/esd-4-31-2013.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–315. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_Chapter03_FINAL.pdf.]

  • Schmittner, A., A. Oschlies, H. D. Matthews, and E. D. Galbraith, 2008: Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem. Cycles, 22, GB1013, doi:10.1029/2007GB002953.

    • Search Google Scholar
    • Export Citation
  • Schuur, E. A. G., and Coauthors, 2008: Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience, 58, 701714, doi:10.1641/B580807.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_TS_FINAL.pdf.]

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmos.–Ocean, 39, 361428, doi:10.1080/07055900.2001.9649686.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2012: Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophys. Res. Lett., 39, L20709, doi:10.1029/2012GL053763.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., 1987: Relative contributions of different trace gases to the greenhouse effect. Climate Monitor, 16, 1428.

  • Wigley, T. M. L., and M. E. Schlesinger, 1985: Analytical solution for the effect of increasing CO2 on global mean temperature. Nature, 315, 649652, doi:10.1038/315649a0.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., M. Eby, H. D. Matthews, and A. J. Weaver, 2009: Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl. Acad. Sci. USA, 106, 16 12916 134, doi:10.1073/pnas.0805800106.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., V. Arora, and N. Gillett, 2012: Is the climate response to CO2 emissions path dependent? Geophys. Res. Lett.,39, L05703, doi:10.1029/2011GL050205.

  • Zickfeld, K., and Coauthors, 2013: Long-term climate change commitment and reversibility: An EMIC intercomparison. J. Climate, 26, 5782–5809, doi:10.1175/JCLI-D-12-00584.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1477 423 49
PDF Downloads 990 321 38