Response of Southern Ocean Convection and Abyssal Overturning to Surface Buoyancy Perturbations

Adele K. Morrison Research School of Earth Sciences, and ARC Centre of Excellence for Climate System Science, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Adele K. Morrison in
Current site
Google Scholar
PubMed
Close
,
Matthew H. England Climate Change Research Centre, and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
, and
Andrew McC. Hogg Research School of Earth Sciences, and ARC Centre of Excellence for Climate System Science, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores how buoyancy-driven modulations in the abyssal overturning circulation affect Southern Ocean temperature and salinity in an eddy-permitting ocean model. Consistent with previous studies, the modeled surface ocean south of 50°S cools and freshens in response to enhanced surface freshwater fluxes. Paradoxically, upper-ocean cooling also occurs for small increases in the surface relaxation temperature. In both cases, the surface cooling and freshening trends are linked to reduced convection and a slowing of the abyssal overturning circulation, with associated changes in oceanic transport of heat and salt. For small perturbations, convective shutdown does not begin immediately, but instead develops via a slow feedback between the weakened overturning circulation and buoyancy anomalies. Two distinct phases of surface cooling are found: an initial smaller trend associated with the advective (overturning) adjustment of up to ~60 yr, followed by more rapid surface cooling during the convective shutdown period. The duration of the first advective phase decreases for larger forcing perturbations. As may be expected during the convective shutdown phase, the deep ocean warms and salinifies for both types of buoyancy perturbation. However, during the advective phase, the deep ocean freshens in response to freshwater perturbations but salinifies in the surface warming perturbations. The magnitudes of the modeled surface and abyssal trends during the advective phase are comparable to the recent observed multidecadal Southern Ocean temperature and salinity changes.

Corresponding author address: Adele Morrison, Program in Atmospheric and Oceanic Sciences, Princeton University, 300 Forrestal Rd., Princeton, NJ 08544. E-mail: adelem@princeton.edu

Abstract

This study explores how buoyancy-driven modulations in the abyssal overturning circulation affect Southern Ocean temperature and salinity in an eddy-permitting ocean model. Consistent with previous studies, the modeled surface ocean south of 50°S cools and freshens in response to enhanced surface freshwater fluxes. Paradoxically, upper-ocean cooling also occurs for small increases in the surface relaxation temperature. In both cases, the surface cooling and freshening trends are linked to reduced convection and a slowing of the abyssal overturning circulation, with associated changes in oceanic transport of heat and salt. For small perturbations, convective shutdown does not begin immediately, but instead develops via a slow feedback between the weakened overturning circulation and buoyancy anomalies. Two distinct phases of surface cooling are found: an initial smaller trend associated with the advective (overturning) adjustment of up to ~60 yr, followed by more rapid surface cooling during the convective shutdown period. The duration of the first advective phase decreases for larger forcing perturbations. As may be expected during the convective shutdown phase, the deep ocean warms and salinifies for both types of buoyancy perturbation. However, during the advective phase, the deep ocean freshens in response to freshwater perturbations but salinifies in the surface warming perturbations. The magnitudes of the modeled surface and abyssal trends during the advective phase are comparable to the recent observed multidecadal Southern Ocean temperature and salinity changes.

Corresponding author address: Adele Morrison, Program in Atmospheric and Oceanic Sciences, Princeton University, 300 Forrestal Rd., Princeton, NJ 08544. E-mail: adelem@princeton.edu
Save
  • Aiken, C. M., and M. H. England, 2008: Sensitivity of the present-day climate to freshwater forcing associated with Antarctic sea ice loss. J. Climate, 21, 39363946, doi:10.1175/2007JCLI1901.1.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, doi:10.1038/ngeo1767.

    • Search Google Scholar
    • Export Citation
  • Couldrey, M. P., L. Jullion, A. C. Naveira Garabato, C. Rye, L. Herráiz-Borreguero, P. J. Brown, M. P. Meredith, and K. L. Speer, 2013: Remotely induced warming of Antarctic Bottom Water in the eastern Weddell gyre. Geophys. Res. Lett., 40, 27552760, doi:10.1002/grl.50526.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442, doi:10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and Coauthors, 2011: Climate variability and radiocarbon in the CM2Mc Earth System Model. J. Climate, 24, 42304254, doi:10.1175/2011JCLI3919.1.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., H. A. Dijkstra, and J. A. Saenz, 2013: The energetics of a collapsing meridional overturning circulation. J. Phys. Oceanogr., 43, 15121524, doi:10.1175/JPO-D-12-0212.1.

    • Search Google Scholar
    • Export Citation
  • Huhn, O., M. Rhein, M. Hoppema, and S. van Heuven, 2013: Decline of deep and bottom water ventilation and slowing down of anthropogenic carbon storage in the Weddell Sea, 1984–2011. Deep-Sea Res. I, 76, 6684, doi:10.1016/j.dsr.2013.01.005.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865879, doi:10.1002/joc.1169.

    • Search Google Scholar
    • Export Citation
  • Kirkman, C. H., and C. M. Bitz, 2011: The effect of the sea ice freshwater flux on Southern Ocean temperatures in CCSM3: Deep-ocean warming and delayed surface warming. J. Climate, 24, 22242237, doi:10.1175/2010JCLI3625.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and T. J. McDougall, 2010: Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J. Phys. Oceanogr., 40, 16901709, doi:10.1175/2010JPO4303.1.

    • Search Google Scholar
    • Export Citation
  • Kouketsu, S., and Coauthors, 2011: Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res.,116, C03012, doi:10.1029/2010JC006464.

  • Latif, M., T. Martin, and W. Park, 2013: Southern Ocean sector centennial climate variability and recent decadal trends. J. Climate, 26, 77677782, doi:10.1175/JCLI-D-12-00281.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1995: Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 378, 165167, doi:10.1038/378165a0.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., J. A. Church, N. L. Bindoff, and G. D. Williams, 2007: Antarctic coastal polynya response to climate change. J. Geophys. Res.,112, C07009, doi:10.1029/2005JC003291.

  • Martin, T., W. Park, and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Climate Dyn., 40, 20052022, doi:10.1007/s00382-012-1586-7.

    • Search Google Scholar
    • Export Citation
  • Menviel, L., A. Timmermann, O. E. Timm, and A. Mouchet, 2010: Climate and biogeochemical response to a rapid melting of the West Antarctic Ice Sheet during interglacials and implications for future climate. Paleoceanography, 25, PA4231, doi:10.1029/2009PA001892.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871880, doi:10.5194/tc-6-871-2012.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean Waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26, 61056122, doi:10.1175/JCLI-D-12-00834.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.,108, 4407, doi:10.1029/2002JD002670.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Send, U., and J. Marshall, 1995: Integral effects of deep convection. J. Phys. Oceanogr., 25, 855872, doi:10.1175/1520-0485(1995)025<0855:IEODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., S. Aoki, K. I. Ohshima, and S. R. Rintoul, 2012: Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian–Antarctic Basin. Ocean Sci., 8, 419432, doi:10.5194/os-8-419-2012.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., S. E. Wijffels, B. Tilbrook, K. Katsumata, A. Murata, and A. M. Macdonald, 2013: Deep ocean changes near the western boundary of the South Pacific Ocean. J. Phys. Oceanogr., 43, 21322141, doi:10.1175/JPO-D-12-0182.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., D. Seidov, and B. J. Haupt, 2007: Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J. Climate, 20, 436448, doi:10.1175/JCLI4015.1.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., T. Fichefet, H. Goosse, and M. F. Loutre, 2009: Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate. Climate Dyn., 33, 365381, doi:10.1007/s00382-008-0496-1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • van Wijk, E. M., and S. R. Rintoul, 2014: Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin. Geophys. Res. Lett., 41, 16571664, doi:10.1002/2013GL058921.

    • Search Google Scholar
    • Export Citation
  • Winton, M., R. W. Hallberg, and A. Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in z-coordinate ocean models. J. Phys. Oceanogr., 28, 21632174, doi:10.1175/1520-0485(1998)028<2163:SODDFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 328 140 16
PDF Downloads 171 52 11