Statistical Downscaling in the Tropics Can Be Sensitive to Reanalysis Choice: A Case Study for Precipitation in the Philippines

R. Manzanas Grupo de Meteorología, Dpto. Matemática Aplicada y CC. Computación, Universidad de Cantabria, Santander, Spain

Search for other papers by R. Manzanas in
Current site
Google Scholar
PubMed
Close
,
S. Brands Grupo de Meteorología, Instituto de Física de Cantabria, CSIC–Universidad de Cantabria, Santander, Spain

Search for other papers by S. Brands in
Current site
Google Scholar
PubMed
Close
,
D. San-Martín Predictia Intelligent Data Solutions, Santander, Spain

Search for other papers by D. San-Martín in
Current site
Google Scholar
PubMed
Close
,
A. Lucero Philippine Atmospheric, Geophysical and Astronomical Services Administration, Quezon City, Philippines

Search for other papers by A. Lucero in
Current site
Google Scholar
PubMed
Close
,
C. Limbo Philippine Atmospheric, Geophysical and Astronomical Services Administration, Quezon City, Philippines

Search for other papers by C. Limbo in
Current site
Google Scholar
PubMed
Close
, and
J. M. Gutiérrez Grupo de Meteorología, Instituto de Física de Cantabria, CSIC–Universidad de Cantabria, Santander, Spain

Search for other papers by J. M. Gutiérrez in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This work shows that local-scale climate projections obtained by means of statistical downscaling are sensitive to the choice of reanalysis used for calibration. To this aim, a generalized linear model (GLM) approach is applied to downscale daily precipitation in the Philippines. First, the GLMs are trained and tested separately with two distinct reanalyses (ERA-Interim and JRA-25) using a cross-validation scheme over the period 1981–2000. When the observed and downscaled time series are compared, the attained performance is found to be sensitive to the reanalysis considered if climate change signal–bearing variables (temperature and/or specific humidity) are included in the predictor field. Moreover, performance differences are shown to be in correspondence with the disagreement found between the raw predictors from the two reanalyses. Second, the regression coefficients calibrated either with ERA-Interim or JRA-25 are subsequently applied to the output of a global climate model (MPI-ECHAM5) in order to assess the sensitivity of local-scale climate change projections (up to 2100) to reanalysis choice. In this case, the differences detected in present climate conditions are considerably amplified, leading to “delta-change” estimates differing by up to 35% (on average for the entire country) depending on the reanalysis used for calibration. Therefore, reanalysis choice is an important contributor to the uncertainty of local-scale climate change projections and, consequently, should be treated with as much care as other better-known sources of uncertainty (e.g., the choice of the GCM and/or downscaling method). Implications of the results for the entire tropics, as well as for the model output statistics downscaling approach are also briefly discussed.

Corresponding author address: R. Manzanas, Grupo de Meteorología, Dpto. Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Avda. los Castros, s/n, 39005, Santander, Spain. E-mail: rmanzanas@ifca.unican.es

Abstract

This work shows that local-scale climate projections obtained by means of statistical downscaling are sensitive to the choice of reanalysis used for calibration. To this aim, a generalized linear model (GLM) approach is applied to downscale daily precipitation in the Philippines. First, the GLMs are trained and tested separately with two distinct reanalyses (ERA-Interim and JRA-25) using a cross-validation scheme over the period 1981–2000. When the observed and downscaled time series are compared, the attained performance is found to be sensitive to the reanalysis considered if climate change signal–bearing variables (temperature and/or specific humidity) are included in the predictor field. Moreover, performance differences are shown to be in correspondence with the disagreement found between the raw predictors from the two reanalyses. Second, the regression coefficients calibrated either with ERA-Interim or JRA-25 are subsequently applied to the output of a global climate model (MPI-ECHAM5) in order to assess the sensitivity of local-scale climate change projections (up to 2100) to reanalysis choice. In this case, the differences detected in present climate conditions are considerably amplified, leading to “delta-change” estimates differing by up to 35% (on average for the entire country) depending on the reanalysis used for calibration. Therefore, reanalysis choice is an important contributor to the uncertainty of local-scale climate change projections and, consequently, should be treated with as much care as other better-known sources of uncertainty (e.g., the choice of the GCM and/or downscaling method). Implications of the results for the entire tropics, as well as for the model output statistics downscaling approach are also briefly discussed.

Corresponding author address: R. Manzanas, Grupo de Meteorología, Dpto. Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Avda. los Castros, s/n, 39005, Santander, Spain. E-mail: rmanzanas@ifca.unican.es
Save
  • Abaurrea, J., and J. Asín, 2005: Forecasting local daily precipitation patterns in a climate change scenario. Climate Res., 28, 183197, doi:10.3354/cr028183.

    • Search Google Scholar
    • Export Citation
  • Brands, S., S. Herrera, D. San-Martín, and J. M. Gutiérrez, 2011: Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Climate Res., 48, 145161, doi:10.3354/cr00995.

    • Search Google Scholar
    • Export Citation
  • Brands, S., J. M. Gutiérrez, S. Herrera, and A. S. Cofiño, 2012: On the use of reanalysis data for downscaling. J. Climate, 25, 25172526, doi:10.1175/JCLI-D-11-00251.1.

    • Search Google Scholar
    • Export Citation
  • Brands, S., S. Herrera, J. Fernández, and J. M. Gutiérrez, 2013: How well do CMIP5 Earth system models simulate present climate conditions in Europe and Africa? Climate Dyn., 41, 803817, doi:10.1007/s00382-013-1742-8.

    • Search Google Scholar
    • Export Citation
  • Brandsma, T., and T. A. Buishand, 1997: Statistical linkage of daily precipitation in Switzerland to atmospheric circulation and temperature. J. Hydrol., 198, 98123, doi:10.1016/S0022-1694(96)03326-4.

    • Search Google Scholar
    • Export Citation
  • Bürger, G., and Y. Chen, 2005: Regression-based downscaling of spatial variability for hydrologic applications. J. Hydrol., 311, 299317, doi:10.1016/j.jhydrol.2005.01.025.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., and B. C. Hewitson, 2005: Performance of NCEP–NCAR reanalysis variables in statistical downscaling of daily precipitation. Climate Res., 28, 95107, doi:10.3354/cr028095.

    • Search Google Scholar
    • Export Citation
  • Chandler, R. E., and H. S. Wheater, 2002: Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland. Water Resour. Res., 38, 1192, doi:10.1029/2001WR000906.

    • Search Google Scholar
    • Export Citation
  • Charles, S. P., B. C. Bates, P. H. Whetton, and J. P. Hughes, 1999: Validation of downscaling models for changed climate conditions: Case study of southwestern Australia. Climate Res., 12, 114, doi:10.3354/cr012001.

    • Search Google Scholar
    • Export Citation
  • Chen, H., C. Y. Xu, and S. Guo, 2012: Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J. Hydrol., 434, 3645, doi:10.1016/j.jhydrol.2012.02.040.

    • Search Google Scholar
    • Export Citation
  • Chu, J.-L., and P.-S. Yu, 2010: A study of the impact of climate change on local precipitation using statistical downscaling. J. Geophys. Res., 115, D10105, doi:10.1029/2009JD012357.

    • Search Google Scholar
    • Export Citation
  • Chu, J.-L., H. Kang, C.-Y. Tam, C.-K. Park, and C.-T. Chen, 2008: Seasonal forecast for local precipitation over northern Taiwan using statistical downscaling. J. Geophys. Res., 113, D12118, doi:10.1029/2007JD009424.

    • Search Google Scholar
    • Export Citation
  • Coronas, J., 1920: The climate and weather of the Philippines, 1903–1918. Census of the Philippine Islands: 1918, Bureau of Printing, Manila, 291–467.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc.,137, 553–597, doi:10.1002/qj.828.

  • Dibike, Y. B., and P. Coulibaly, 2005: Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol., 307, 145163, doi:10.1016/j.jhydrol.2004.10.012.

    • Search Google Scholar
    • Export Citation
  • Eden, J. M., M. Widmann, D. Grawe, and S. Rast, 2012: Skill, correction, and downscaling of GCM-simulated precipitation. J. Climate, 25, 39703984, doi:10.1175/JCLI-D-11-00254.1.

    • Search Google Scholar
    • Export Citation
  • Fealy, R., and J. Sweeney, 2007: Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach. Int. J. Climatol., 27, 20832094, doi:10.1002/joc.1506.

    • Search Google Scholar
    • Export Citation
  • Flores, J. F., and V. F. Balagot, 1969: Climate of the Philippines. Climates of Northern and Eastern Asia, Vol. 8, World Survey of Climatology, H. E. Landsburg, Ed., Elsevier, 159–213.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., G. P. Brasseur, E. Roeckner, and J. Marotzke, 2006: Preface to special section on climate models at the Max Planck Institute for Meteorology. J. Climate, 19, 37693770, doi:10.1175/JCLI9023.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Climate, 15, 11411158, doi:10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodess, C., and J. Palutikof, 1998: Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int. J. Climatol., 18, 10511083, doi:10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1.

    • Search Google Scholar
    • Export Citation
  • Grotch, S. L., and M. C. MacCracken, 1991: The use of general circulation models to predict regional climatic change. J. Climate, 4, 286303, doi:10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gutiérrez, J. M., D. San-Martín, S. Brands, R. Manzanas, and S. Herrera, 2013: Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Climate, 26, 171188, doi:10.1175/JCLI-D-11-00687.1.

    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., C. Achberger, R. E. Benestad, D. Chen, and E. J. Forland, 2005: Statistical downscaling of climate scenarios over Scandinavia. Climate Res., 29, 255268, doi:10.3354/cr029255.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., G. C. Cawley, C. Harpham, R. L. Wilby, and C. M. Goodess, 2006: Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. Int. J. Climatol., 26, 13971415, doi:10.1002/joc.1318.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., and J. Jacobeit, 2008: Assessments of Mediterranean precipitation changes for the 21st century using statistical downscaling techniques. Int. J. Climatol., 28, 10251045, doi:10.1002/joc.1597.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., S. Seubert, A. Paxian, G. Vogt, H. Paeth, and J. Jacobeit, 2013: Changes of total versus extreme precipitation and dry periods until the end of the twenty-first century: Statistical assessments for the Mediterranean area. Theor. Appl. Climatol., 111, 120, doi:10.1007/s00704-012-0639-5.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 1996: Climate downscaling: Techniques and application. Climate Res., 7, 8595, doi:10.3354/cr007085.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2006: Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa. Int. J. Climatol., 26, 13151337, doi:10.1002/joc.1314.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., J. Daron, R. G. Crane, M. F. Zermoglio, and C. Jack, 2014: Interrogating empirical-statistical downscaling. Climatic Change, 122, 539554, doi:10.1007/s10584-013-1021-z.

    • Search Google Scholar
    • Export Citation
  • Hofer, M., B. Marzeion, and T. Moelg, 2012: Comparing the skill of different reanalyses and their ensembles as predictors for daily air temperature on a glaciated mountain (Peru). Climate Dyn., 39, 19691980, doi:10.1007/s00382-012-1501-2.

    • Search Google Scholar
    • Export Citation
  • Kang, H., K. H. An, C. K. Park, A. L. S. Solis, and K. Stitthichivapak, 2007: Multimodel output statistical downscaling prediction of precipitation in the Philippines and Thailand. Geophys. Res. Lett., 34, L15710, doi:10.1029/2007GL030730.

    • Search Google Scholar
    • Export Citation
  • Kintanar, R. L., 1984: Climate of the Philippines. Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) Tech. Rep., 38 pp.

  • Koukidis, E. N., and A. A. Berg, 2009: Sensitivity of the Statistical DownScaling Model (SDSM) to reanalysis products. Atmos.–Ocean, 47, 118, doi:10.3137/AO924.2009.

    • Search Google Scholar
    • Export Citation
  • Manzanas, R., L. K. Amekudzi, K. Preko, S. Herrera, and J. M. Gutiérrez, 2014: Precipitation variability and trends in Ghana: An intercomparison of observational and reanalysis products. Climatic Change, 124, 805–819, doi:10.1007/s10584-014-1100-9.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Marzban, C., S. Sandgathe, and E. Kalnay, 2006: MOS, perfect prog, and reanalysis. Mon. Wea. Rev., 134, 657663, doi:10.1175/MWR3088.1.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. W. M. Wedderburn, 1972: Generalized linear models. J. Roy. Stat. Soc., 135A, 370384, doi:10.2307/2344614.

  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Park, J.-H., S.-G. Oh, and M.-S. Suh, 2013: Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. J. Geophys. Res. Atmos., 118, 16521667, doi:10.1002/jgrd.50159.

    • Search Google Scholar
    • Export Citation
  • Paul, S., C. M. Liu, J. M. Chen, and S. H. Lin, 2008: Development of a statistical downscaling model for projecting monthly rainfall over East Asia from a general circulation model output. J. Geophys. Res., 113, D15117, doi:10.1029/2007JD009472.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2007: How reliable are climate models? Tellus, 59A, 229, doi:10.1111/j.1600-0870.2006.00211.x.

  • Sauter, T., and V. Venema, 2011: Natural three-dimensional predictor domains for statistical precipitation downscaling. J. Climate, 24, 61326145, doi:10.1175/2011JCLI4155.1.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 38663873, doi:10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., and D. A. Jones, 2008: Future projections of winter rainfall in southeast Australia using a statistical downscaling technique. Climatic Change, 86, 165187, doi:10.1007/s10584-007-9279-7.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., A. Dufour, and B. McAvaney, 2003: An estimate of future climate change for western France using a statistical downscaling technique. Climate Dyn., 20, 807823, doi:10.1007/s00382-002-0298-9.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, J. W. Hurrell, and M. Fiorino, 2001: Quality of reanalyses in the tropics. J. Climate, 14, 14991510, doi:10.1175/1520-0442(2001)014<1499:QORITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trigo, R., and J. Palutikof, 2001: Precipitation scenarios over Iberia: A comparison between direct GCM output and different downscaling techniques. J. Climate, 14, 44224446, doi:10.1175/1520-0442(2001)014<4422:PSOIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vrac, M., M. L. Stein, K. Hayhoe, and X.-Z. Liang, 2007: A general method for validating statistical downscaling methods under future climate change. Geophys. Res. Lett., 34, L18701, doi:10.1029/2007GL030295.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., C. S. Bretherton, and E. P. Salathé, 2003: Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J. Climate, 16, 799816, doi:10.1175/1520-0442(2003)016<0799:SPDOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., and T. M. L. Wigley, 1997: Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr., 21, 530548, doi:10.1177/030913339702100403.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., H. Hassan, and K. Hanaki, 1998: Statistical downscaling of hydrometeorological variables using general circulation model output. J. Hydrol., 205, 119, doi:10.1016/S0022-1694(97)00130-3.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., S. Charles, E. Zorita, B. Timbal, P. Whetton, and L. Mearns, 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. Tech. Rep., IPCC TGCIA, 27 pp.

  • Wilby, R. L., J. Troni, Y. Biot, L. Tedd, B. C. Hewitson, D. M. Smith, and R. T. Sutton, 2009: A review of climate risk information for adaptation and development planning. Int. J. Climatol., 29, 11931215, doi:10.1002/joc.1839.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1231 314 61
PDF Downloads 832 139 4