An Assessment of Direct Radiative Forcing, Radiative Adjustments, and Radiative Feedbacks in Coupled Ocean–Atmosphere Models

Eui-Seok Chung Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Eui-Seok Chung in
Current site
Google Scholar
PubMed
Close
and
Brian J. Soden Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian J. Soden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, radiative kernels are used to separate direct radiative forcing from radiative adjustments to that forcing to quantify the magnitude and intermodel spread of tropospheric and stratospheric adjustments in coupled ocean–atmosphere climate models. Radiative feedbacks are also quantified and separated from radiative forcing by assuming that feedbacks are a linear response to changes in global-mean surface temperature. The direct radiative forcing due to a quadrupling of CO2 is found to have an intermodel spread of ~3 W m−2. In contrast to previous studies, relatively small estimates of cloud adjustments are obtained, which are both positive and negative. This discrepancy is at least partially attributable to small, but nonnegligible, global-mean surface warming in fixed sea surface temperature experiments, which aliases a surface-driven feedback response into estimates of the adjustments. This study suggests that correcting for the bias induced from this global-mean surface warming offers a more accurate estimate of tropospheric adjustments. It is shown that the regional patterns in the tropospheric adjustments tend to oppose the radiative feedback. This compensation is closely tied to spatial inhomogeneities in the initial rate of surface warming, suggesting that a substantial part of the spatial variation in the estimated tropospheric adjustment is an artifact of the linear regression methodology. Even when assuming that the global-mean estimates of the tropospheric adjustments are valid, neglecting them introduces little uncertainty in estimates of the total forcing, feedback, or effective climate sensitivity relative to the intermodel spread in these values.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00436.s1.

Corresponding author address: Eui-Seok Chung, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: echung@rsmas.miami.edu

Abstract

In this study, radiative kernels are used to separate direct radiative forcing from radiative adjustments to that forcing to quantify the magnitude and intermodel spread of tropospheric and stratospheric adjustments in coupled ocean–atmosphere climate models. Radiative feedbacks are also quantified and separated from radiative forcing by assuming that feedbacks are a linear response to changes in global-mean surface temperature. The direct radiative forcing due to a quadrupling of CO2 is found to have an intermodel spread of ~3 W m−2. In contrast to previous studies, relatively small estimates of cloud adjustments are obtained, which are both positive and negative. This discrepancy is at least partially attributable to small, but nonnegligible, global-mean surface warming in fixed sea surface temperature experiments, which aliases a surface-driven feedback response into estimates of the adjustments. This study suggests that correcting for the bias induced from this global-mean surface warming offers a more accurate estimate of tropospheric adjustments. It is shown that the regional patterns in the tropospheric adjustments tend to oppose the radiative feedback. This compensation is closely tied to spatial inhomogeneities in the initial rate of surface warming, suggesting that a substantial part of the spatial variation in the estimated tropospheric adjustment is an artifact of the linear regression methodology. Even when assuming that the global-mean estimates of the tropospheric adjustments are valid, neglecting them introduces little uncertainty in estimates of the total forcing, feedback, or effective climate sensitivity relative to the intermodel spread in these values.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00436.s1.

Corresponding author address: Eui-Seok Chung, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: echung@rsmas.miami.edu

Supplementary Materials

    • Supplemental Materials (DOC 39.00 KB)
Save
  • Andrews, T., 2014: Using an AGCM to diagnose historical effective radiative forcing and mechanisms of recent decadal climate change. J. Climate, 27, 11931209, doi:10.1175/JCLI-D-13-00336.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., and P. M. Forster, 2008: CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys. Res. Lett., 35, L04802, doi:10.1029/2007GL032273.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, doi:10.1175/JCLI-D-12-00544.1.

    • Search Google Scholar
    • Export Citation
  • Block, K., and T. Mauritsen, 2013: Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J. Adv. Model. Earth Syst., 5, 676691, doi:10.1002/jame.20041.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, doi:10.1029/JD095iD10p16601.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., B. J. Soden, and B.-J. Sohn, 2010: Revisiting the determination of climate sensitivity from relationships between surface temperature and radiative fluxes. Geophys. Res. Lett., 37, L10703, doi:10.1029/2010GL043051.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., B. J. Soden, B.-J. Sohn, and J. Schmetz, 2011: Model-simulated humidity bias in the upper troposphere and its relation to the large-scale circulation. J. Geophys. Res., 116, D10110, doi:10.1029/2011JD015609.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., B. J. Soden, and A. C. Clement, 2012: Diagnosing climate feedbacks in coupled ocean–atmosphere models. Surv. Geophys., 33, 733744, doi:10.1007/s10712-012-9187-x.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, doi:10.1029/2005JD006713.

    • Search Google Scholar
    • Export Citation
  • Colman, R. A., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865873, doi:10.1007/s00382-003-0310-z.

    • Search Google Scholar
    • Export Citation
  • Colman, R. A., and B. J. McAvaney, 2011: On tropospheric adjustment to forcing and climate feedbacks. Climate Dyn., 36, 16491658, doi:10.1007/s00382-011-1067-4.

    • Search Google Scholar
    • Export Citation
  • Colman, R. A., and L. I. Hanson, 2013: On atmospheric radiative feedbacks associated with climate variability and change. Climate Dyn., 40, 475492, doi:10.1007/s00382-012-1391-3.

    • Search Google Scholar
    • Export Citation
  • Dalton, M. M., and K. M. Shell, 2013: Comparison of short-term and long-term radiative feedbacks and variability in twentieth-century global climate model simulations. J. Climate, 26, 10 05110 070, doi:10.1175/JCLI-D-12-00564.1.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144, doi:10.1175/2008JCLI2239.1.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., and G. H. Roe, 2013: Four perspectives on climate feedbacks. Geophys. Res. Lett., 40, 40074011, doi:10.1002/grl.50711.

  • Forster, P. M., and Coauthors, 2011: Evaluation of radiation scheme performance within chemistry climate models. J. Geophys. Res., 116, D10302, doi:10.1029/2010JD015361.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res., 118, 11391150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and M. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871, doi:10.1175/2007JCLI1834.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, doi:10.1175/2009JCLI3466.1.

    • Search Google Scholar
    • Export Citation
  • Huang, X., X. Chen, B. J. Soden, and X. Liu, 2014: The spectral dimension of longwave feedbacks in the CMIP3 and CMIP5 experiments. Geophys. Res. Lett., 41, 78307837, doi:10.1002/2014GL061938.

    • Search Google Scholar
    • Export Citation
  • Jonko, A. K., K. M. Shell, B. M. Sanderson, and G. Danabasoglu, 2012: Climate feedbacks in CCSM3 under changing CO2 forcing. Part I: Adapting the linear radiative kernel technique to feedback calculations for a broad range of forcings. J. Climate, 25, 52605272, doi:10.1175/JCLI-D-11-00524.1.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 2007: Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett., 34, L22710, doi:10.1029/2007GL031383.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., 2008: Why are climate models reproducing the observed global surface warming so well? Geophys. Res. Lett., 35, L18704, doi:10.1029/2008GL034932.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., 1995: Transient response of the Hadley Centre coupled ocean–atmosphere model to increasing carbon dioxide. Part III: Analysis of global-mean response using simple models. J. Climate, 8, 496514, doi:10.1175/1520-0442(1995)008<0496:TROTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., T. Andrews, and M. J. Webb, 2014: Global-mean radiative feedbacks and forcing in atmosphere-only and coupled atmosphere–ocean climate change experiments. Geophys. Res. Lett., 41, doi:10.1002/2014GL060347.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. Geophys. Res. Lett., 27, 26852688, doi:10.1029/2000GL011373.

    • Search Google Scholar
    • Export Citation
  • Shell, K. M., J. T. Kiehl, and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmospheric Model. J. Climate, 21, 22692282, doi:10.1175/2007JCLI2044.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, O. Boucher, C. Bretherton, P. M. Forster, J. M. Gregory, and B. Stevens, 2015: Adjustments in the forcing–feedback framework for understanding climate change. Bull. Amer. Meteor. Soc., 96, 217228, doi:10.1175/BAMS-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and G. A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean–atmosphere models. Geophys. Res. Lett., 38, L12704, doi:10.1029/2011GL047632.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665, doi:10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., F. H. Lambert, and J. M. Gregory, 2013: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 40, 677707, doi:10.1007/s00382-012-1336-x.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, doi:10.1175/JCLI-D-11-00248.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, doi:10.1175/JCLI-D-12-00555.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. Andrews, P. M. Forster, and K. E. Taylor, 2014: Quantifying components of aerosol-cloud-radiation interactions in climate models. J. Geophys. Res., 119, 75997615, doi:10.1002/2014JD021710.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. J. Hack, J. T. Kiehl, and R. D. Cess, 1994: Diagnostic study of climate feedback processes in atmospheric general circulation models. J. Geophys. Res., 99, 55255537, doi:10.1029/93JD03523.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 704 186 16
PDF Downloads 558 158 10