Characterizing ENSO Coupled Variability and Its Impact on North American Seasonal Precipitation and Temperature

Michelle L. L’Heureux National Oceanic and Atmospheric Administration/National Weather Service/National Centers for Environmental Prediction, Climate Prediction Center, College Park, Maryland

Search for other papers by Michelle L. L’Heureux in
Current site
Google Scholar
PubMed
Close
,
Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
, and
Anthony G. Barnston International Research Institute for Climate and Society, The Earth Institute of Columbia University, Palisades, New York

Search for other papers by Anthony G. Barnston in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two questions are addressed in this paper: whether ENSO can be adequately characterized by simple, seasonally invariant indices and whether the time series of a single component—SST or OLR—provides a sufficiently complete representation of ENSO for the purpose of quantifying U.S. climate impacts. Here, ENSO is defined as the leading mode of seasonally varying canonical correlation analysis (CCA) between anomalies of tropical Pacific SST and outgoing longwave radiation (OLR). The CCA reveals that the strongest regions of coupling are mostly invariant as a function of season and correspond to an OLR region located in the central Pacific Ocean (CP-OLR) and an SST region in the eastern Pacific that coincides with the Niño-3 region. In a linear context, the authors explore whether the use of a combined index of these SST and OLR regions explains additional variance of North American temperature and precipitation anomalies beyond that described by using a single index alone. Certain seasons and regions benefit from the use of a combined index. In particular, a combined index describes more variability in winter/spring precipitation and summer temperature.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00508.s1.

Corresponding author address: Michelle L’Heureux, National Oceanographic and Atmospheric Administration/Climate Prediction Center, 5830 University Research Court, Rm. 3115, W/NP52, College Park, MD 20740. E-mail: michelle.lheureux@noaa.gov

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-15-0678.1 and http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-16-0080.1

Abstract

Two questions are addressed in this paper: whether ENSO can be adequately characterized by simple, seasonally invariant indices and whether the time series of a single component—SST or OLR—provides a sufficiently complete representation of ENSO for the purpose of quantifying U.S. climate impacts. Here, ENSO is defined as the leading mode of seasonally varying canonical correlation analysis (CCA) between anomalies of tropical Pacific SST and outgoing longwave radiation (OLR). The CCA reveals that the strongest regions of coupling are mostly invariant as a function of season and correspond to an OLR region located in the central Pacific Ocean (CP-OLR) and an SST region in the eastern Pacific that coincides with the Niño-3 region. In a linear context, the authors explore whether the use of a combined index of these SST and OLR regions explains additional variance of North American temperature and precipitation anomalies beyond that described by using a single index alone. Certain seasons and regions benefit from the use of a combined index. In particular, a combined index describes more variability in winter/spring precipitation and summer temperature.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00508.s1.

Corresponding author address: Michelle L’Heureux, National Oceanographic and Atmospheric Administration/Climate Prediction Center, 5830 University Research Court, Rm. 3115, W/NP52, College Park, MD 20740. E-mail: michelle.lheureux@noaa.gov

A comment/reply has been published regarding this article and can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-15-0678.1 and http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-16-0080.1

Supplementary Materials

    • Supplemental Materials (PDF 797.16 KB)
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009a: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, doi:10.1175/2009JCLI2392.1.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009b: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 64776497, doi:10.1175/2009JCLI2393.1.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115, 18251850, doi:10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. Chelliah, and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.–Ocean, 35, 367383, doi:10.1080/07055900.1997.9649597.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, doi:10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. Wayne Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2010: Characterizing warm-ENSO variability in the equatorial Pacific: An OLR perspective. J. Climate, 23, 24282439, doi:10.1175/2009JCLI3030.1.

    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2013: El Niño impacts on seasonal U.S. atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective. J. Climate, 26, 822837, doi:10.1175/JCLI-D-12-00097.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A. G., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and X. Yang, 2011: Field significance of regression patterns. J. Climate, 24, 50945107, doi:10.1175/2011JCLI4105.1.

  • Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. Van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, doi:10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Furtado, J., E. DiLorenzo, B. Anderson, and N. Schneider, 2012: Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Climate Dyn., 39, 28332846, doi:10.1007/s00382-011-1245-4.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and M. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, doi:10.1038/312141a0.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and M. Dilley, 2005: El Niño: Catastrophe or opportunity? J. Climate, 18, 651665, doi:10.1175/JCLI-3277.1.

  • Gruber, A., S. Xiujuan, M. Kanamitsu, and J. Schemm, 2000: The comparison of two merged rain gauge–satellite precipitation datasets. Bull. Amer. Meteor. Soc., 81, 26312644, doi:10.1175/1520-0477(2000)081<2631:TCOTMR>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, H.-L. Ren, H. Wang, M. L’Heureux, and F.-F. Jin, 2013: Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 26012613, doi:10.1175/JCLI-D-12-00265.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern Pacific and central Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., 2013: Can we distinguish canonical El Niño from Modoki? Geophys. Res. Lett., 40, 52465251, doi:10.1002/grl.51007.

    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., and R. W. Higgins, 2007: An alert classification system for monitoring and assessing the ENSO cycle. Wea. Forecasting, 22, 353371, doi:10.1175/WAF987.1.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., D. C. Collins, and Z.-Z. Hu, 2013: Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño–Southern Oscillation. Climate Dyn., 40, 12231236, doi:10.1007/s00382-012-1331-2.

    • Search Google Scholar
    • Export Citation
  • Lian, T., and D. Chen, 2012: An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J. Climate, 25, 53615373, doi:10.1175/JCLI-D-11-00663.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lopez, H., and B. P. Kirtman, 2013: Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys. Res. Lett., 40, 47224727, doi:10.1002/grl.50913.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., M. Alonso-Balmaseda, and F. Molteni, 2013: On the dependence of ENSO simulation on the coupled model mean state. Climate Dyn., 41, 15091525, doi:10.1007/s00382-012-1574-y.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, doi:10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newman, M., S.-I. Shin, and M. A. Alexander, 2011: Natural variation in ENSO flavors. Geophys. Res. Lett., 38, L14705, doi:10.1029/2011GL047658.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schonher, T., and S. E. Nicholson, 1989: The relationship between California rainfall and ENSO events. J. Climate, 2, 12581269, doi:10.1175/1520-0442(1989)002<1258:TRBCRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, C. A., and P. Sardeshmukh, 2000: The effect of ENSO on the intraseasonal variance of surface temperature in winter. Int. J. Climatol., 20, 15431557, doi:10.1002/1097-0088(20001115)20:13<1543::AID-JOC579>3.0.CO;2-A.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and H. R. Ogrosky, 2014: The Walker circulation, diabatic heating, and outgoing longwave radiation. Geophys. Res. Lett., 41, 90979105, doi:10.1002/2014GL062257.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. G. Barnston, and S. Li, 2012: Performance of recent multimodel ENSO forecasts. J. Appl. Meteor. Climatol., 51, 637654, doi:10.1175/JAMC-D-11-093.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Loon, H., and R. A. Madden, 1981: The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon. Wea. Rev., 109, 11501162, doi:10.1175/1520-0493(1981)109<1150:TSOPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 5384.

  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, doi:10.1002/joc.2336.

    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5, 12071222, doi:10.1175/JHM-392.1.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7, 17191736, doi:10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate, 6, 18981913, doi:10.1175/1520-0442(1993)006<1898:LSVOAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 634 239 16
PDF Downloads 608 255 13