Natural and Forced North Atlantic Hurricane Potential Intensity Change in CMIP5 Models

Mingfang Ting Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Mingfang Ting in
Current site
Google Scholar
PubMed
Close
,
Suzana J. Camargo Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
,
Cuihua Li Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Cuihua Li in
Current site
Google Scholar
PubMed
Close
, and
Yochanan Kushnir Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Yochanan Kushnir in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Possible future changes of North Atlantic hurricane intensity and the attribution of past hurricane intensity changes in the historical period are investigated using phase 5 of the Climate Model Intercomparison Project (CMIP5), multimodel, multiensemble simulations. For this purpose, the potential intensity (PI), the theoretical upper limit of the tropical cyclone intensity given the large-scale environment, is used.

The CMIP5 models indicate that the PI change as a function of sea surface temperature (SST) variations associated with the Atlantic multidecadal variability (AMV) is more effective than that associated with climate change. Thus, relatively small changes in SST due to natural multidecadal variability can lead to large changes in PI, and the model-simulated multidecadal PI change during the historical period has been largely dominated by AMV. That said, the multimodel mean PI for the Atlantic main development region shows a significant increase toward the end of the twenty-first century under both the RCP4.5 and RCP8.5 emission scenarios. This is because of enhanced surface warming, which would place the North Atlantic PI largely above the historical mean by the mid-twenty-first century, based on CMIP5 model projection.

The authors further attribute the historical PI changes to aerosols and greenhouse gas (GHG) forcing using CMIP5 historical single-forcing simulations. The model simulations indicate that aerosol forcing has been more effective in causing PI changes than the corresponding GHG forcing; the decrease in PI due to aerosols and increase due to GHG largely cancel each other. Thus, PI increases in the recent 30 years appears to be dominated by multidecadal natural variability associated with the positive phase of the AMV.

Lamont-Doherty Earth Observatory Contribution Number 7880.

Corresponding author address: Mingfang Ting, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail: ting@ldeo.columbia.edu

Abstract

Possible future changes of North Atlantic hurricane intensity and the attribution of past hurricane intensity changes in the historical period are investigated using phase 5 of the Climate Model Intercomparison Project (CMIP5), multimodel, multiensemble simulations. For this purpose, the potential intensity (PI), the theoretical upper limit of the tropical cyclone intensity given the large-scale environment, is used.

The CMIP5 models indicate that the PI change as a function of sea surface temperature (SST) variations associated with the Atlantic multidecadal variability (AMV) is more effective than that associated with climate change. Thus, relatively small changes in SST due to natural multidecadal variability can lead to large changes in PI, and the model-simulated multidecadal PI change during the historical period has been largely dominated by AMV. That said, the multimodel mean PI for the Atlantic main development region shows a significant increase toward the end of the twenty-first century under both the RCP4.5 and RCP8.5 emission scenarios. This is because of enhanced surface warming, which would place the North Atlantic PI largely above the historical mean by the mid-twenty-first century, based on CMIP5 model projection.

The authors further attribute the historical PI changes to aerosols and greenhouse gas (GHG) forcing using CMIP5 historical single-forcing simulations. The model simulations indicate that aerosol forcing has been more effective in causing PI changes than the corresponding GHG forcing; the decrease in PI due to aerosols and increase due to GHG largely cancel each other. Thus, PI increases in the recent 30 years appears to be dominated by multidecadal natural variability associated with the positive phase of the AMV.

Lamont-Doherty Earth Observatory Contribution Number 7880.

Corresponding author address: Mingfang Ting, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail: ting@ldeo.columbia.edu
Save
  • Allen, M. R., and L. A. Smith, 1997: Optimal filtering in singular spectrum analysis. Phys. Lett., 234, 419428, doi:10.1016/S0375-9601(97)00559-8.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., J. Rae, A. Jones, C. Johnson, J. Haywood, and O. Boucher, 2011: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J. Geophys. Res., 116, D20206, doi:10.1029/2011JD016074.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, doi:10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 5773, doi:10.1034/j.1600-0870.1996.00004.x.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561, doi:10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002a: Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002b: Low frequency variability of tropical cyclone potential intensity: 2. Climatology for 1982–1995. J. Geophys. Res., 107, 4621, doi:10.1029/2001JD000780.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II, 2013: Tropical cyclone report: Hurricane Sandy. National Hurricane Center Rep. AL182012, 157 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf].

  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, doi:10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Butterworth, S., 1930: On the theory of filter amplifiers. Exp. Wireless, 7, 536541.

  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, doi:10.1175/JCLI-D-12-00549.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. Ting, and Y. Kushnir, 2013: Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Climate Dyn., 40, 15151529, doi:10.1007/s00382-012-1536-4.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. Tippett, A. Sobel, G. Vecchi, and M. Zhao, 2014: Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model. J. Climate, 27, 91719196, doi:10.1175/JCLI-D-13-00505.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 25402555, doi:10.1175/2010JCLI4065.1.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926, doi:10.1175/2010JCLI3659.1.

    • Search Google Scholar
    • Export Citation
  • Driscoll, S., A. Bozzo, L. J. Gray, A. Robock, and G. Stenchikov, 2012: Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res., 117, D17105, doi:10.1029/2012JD017607.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295, doi:10.1038/nature07234.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, doi:10.1038/326483a0.

  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, doi:10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2011: Global warming effects on U.S. hurricane damage. Wea. Climate Soc., 3, 261268, doi:10.1175/WCAS-D-11-00007.1.

  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, doi:10.1073/pnas.1301293110.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and A. Sobel, 2013: Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. J. Adv. Model. Earth Sys., 5, 447458, doi:10.1002/jame.20032.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367, doi:10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., and Coauthors, 2008: Ocean temperature forcing by aerosols across the Atlantic tropical cyclone development region. Geochem. Geophys. Geosyst., 9, Q05V04, doi:10.1029/2007GC001774.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., D. J. Vimont, A. K. Heidinger, J. P. Kossin, and R. Bennartz, 2009: The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies. Science, 324, 778781, doi:10.1126/science.1167404.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, S. Fiedler, and O. Doherty, 2014: An analysis of aeolian dust in climate models. Geophys. Res. Lett., 41, 5996–6001, doi:10.1002/2014GL060545.

    • Search Google Scholar
    • Export Citation
  • Graumann, A., T. Houston, J. Lawrimore, D. Levinson, N. Lott, S. McCown, S. Stephens, and D. Wuertz, 2005: Hurricane Katrina: A climatological perspective. NOAA’s National Climatic Data Center Tech. Rep. 2005-01, 27 pp. [Available online at https://www.ncdc.noaa.gov/oa/reports/tech-report-200501z.pdf.]

  • Henderson-Sellers, A., and Coauthors, 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79, 1938, doi:10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2011: The impact of climate change on TC intensity and structure: A downscaling approach. J. Climate, 24, 46444661, doi:10.1175/2011JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Philos. Trans. Roy. Soc. London,A365, 26952716, doi:10.1098/rsta.2007.2083.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 34773495, doi:10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 10181021, doi:10.1126/science.279.5353.1018.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, doi:10.1029/2006GL028836.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, doi:10.1175/JCLI-D-13-00262.1.

    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, doi:10.1038/ngeo1590.

    • Search Google Scholar
    • Export Citation
  • Lin, N., K. Emanuel, M. Oppenheimer, and E. Vanmarcke, 2012: Physically based assessment of hurricane surge threat under climate change. Nat. Climate Change, 2, 462467, doi:10.1038/nclimate1389.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and Coauthors, 2014: North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J. Climate, 27, 22302270, doi:10.1175/JCLI-D-13-00273.1.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union,87, 233–241, doi:10.1029/2006EO240001.

  • Meehl, G. A., W. M. Washington, D. J. Erickson III, B. P. Briegleb, and P. J. Jaumann, 1996: Climate change from increased CO2 and direct and indirect effects of sulfate aerosols. Geophys. Res. Lett., 23, 37553758, doi:10.1029/96GL03478.

    • Search Google Scholar
    • Export Citation
  • Mendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen, 2012: The impact of climate change on tropical cyclone damage. Nat. Climate Change, 2, 205209, doi:10.1038/nclimate1357.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., and D. Rind, 1999: Response to CO2 transient increase in the GISS coupled model: Regional coolings in a warming climate. J. Climate, 12, 531539, doi:10.1175/1520-0442(1999)012<0531:RTCTII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2007: Impact of scaling behavior on tropical cyclone intensities. Geophys. Res. Lett., 34, L18815, doi:10.1029/2007GL030851.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of tropical cyclone intensities. Geochem. Geophys. Geosyst., 9, Q04V01, doi:10.1029/2007GC001844.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and natural twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, doi:10.1175/2008JCLI2561.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, and C. Li, 2014: North Atlantic Multidecadal SST Oscillation: External forcing versus internal variability. J. Mar. Syst., 133, 2738, doi:10.1016/j.jmarsys.2013.07.006.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., K. L. Swanson, and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687689, doi:10.1126/science.1164396.

  • Villarini, G., and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate,26, 3631–3643, doi:10.1175/JCLI-D-12-00441.1.

  • Wilcox, L. J., E. J. Highwood, and N. J. Dunstone, 2013: The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett., 8, 024 033, doi:10.1088/1748-9326/8/2/024033.

    • Search Google Scholar
    • Export Citation
  • Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory, 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399, 572575, doi:10.1038/21170.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., B. Lu, and B. Xiang, 2013: Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat. Geosci., 6, 828832, doi:10.1038/ngeo1931.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and Coauthors, 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 11351144, doi:10.1175/JAS-D-12-0331.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2010: An analysis of the effect of global warming on the intensity of Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 63826393, doi:10.1175/2010JCLI3837.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 597 205 17
PDF Downloads 431 130 17