North Atlantic Eddy-Driven Jet in Interglacial and Glacial Winter Climates

Niklaus Merz Climate and Environmental Physics, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Search for other papers by Niklaus Merz in
Current site
Google Scholar
PubMed
Close
,
Christoph C. Raible Climate and Environmental Physics, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Search for other papers by Christoph C. Raible in
Current site
Google Scholar
PubMed
Close
, and
Tim Woollings Atmospheric Physics, Clarendon Laboratory, Oxford, United Kingdom

Search for other papers by Tim Woollings in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The atmospheric westerly flow in the North Atlantic (NA) sector is dominated by atmospheric waves or eddies generating via momentum flux convergence, the so-called eddy-driven jet. The position of this jet is variable and shows for the present-day winter climate three preferred latitudinal states: a northern, central, and southern position in the NA. Here, the authors analyze the behavior of the eddy-driven jet under different glacial and interglacial boundary conditions using atmosphere–land-only simulations with the CCSM4 climate model. As state-of-the-art climate models tend to underestimate the trimodality of the jet latitude, the authors apply a bias correction and successfully extract the trimodal behavior of the jet within CCSM4. The analysis shows that during interglacial times (i.e., the early Holocene and the Eemian) the preferred jet positions are rather stable and the observed multimodality is the typical interglacial character of the jet. During glacial times, the jet is strongly enhanced, its position is shifted southward, and the trimodal behavior vanishes. This is mainly due to the presence of the Laurentide ice sheet (LIS). The LIS enhances stationary waves downstream, thereby accelerating and displacing the NA eddy-driven jet by anomalous stationary momentum flux convergence. Additionally, changes in the transient eddy activity caused by topography changes as well as other glacial boundary conditions lead to an acceleration of the westerly winds over the southern NA at the expense of more northern areas. Consequently, both stationary and transient eddies foster the southward shift of the NA eddy-driven jet during glacial winter times.

Corresponding author address: Niklaus Merz, Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland. E-mail: merz@climate.unibe.ch

Abstract

The atmospheric westerly flow in the North Atlantic (NA) sector is dominated by atmospheric waves or eddies generating via momentum flux convergence, the so-called eddy-driven jet. The position of this jet is variable and shows for the present-day winter climate three preferred latitudinal states: a northern, central, and southern position in the NA. Here, the authors analyze the behavior of the eddy-driven jet under different glacial and interglacial boundary conditions using atmosphere–land-only simulations with the CCSM4 climate model. As state-of-the-art climate models tend to underestimate the trimodality of the jet latitude, the authors apply a bias correction and successfully extract the trimodal behavior of the jet within CCSM4. The analysis shows that during interglacial times (i.e., the early Holocene and the Eemian) the preferred jet positions are rather stable and the observed multimodality is the typical interglacial character of the jet. During glacial times, the jet is strongly enhanced, its position is shifted southward, and the trimodal behavior vanishes. This is mainly due to the presence of the Laurentide ice sheet (LIS). The LIS enhances stationary waves downstream, thereby accelerating and displacing the NA eddy-driven jet by anomalous stationary momentum flux convergence. Additionally, changes in the transient eddy activity caused by topography changes as well as other glacial boundary conditions lead to an acceleration of the westerly winds over the southern NA at the expense of more northern areas. Consequently, both stationary and transient eddies foster the southward shift of the NA eddy-driven jet during glacial winter times.

Corresponding author address: Niklaus Merz, Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland. E-mail: merz@climate.unibe.ch
Save
  • Anstey, J. A., and Coauthors, 2013: Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution. J. Geophys. Res., 118, 39563971, doi:10.1002/jgrd.50231.

    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, doi:10.1175/2009JAS3270.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Berckmans, J., T. Woollings, M.-E. Demory, P.-L. Vidale, and M. Roberts, 2013: Atmospheric blocking in a high resolution climate model: Influences of mean state, orography and eddy forcing. Atmos. Sci. Lett., 14, 3440, doi:10.1002/asl2.412.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Born, A., and K. H. Nisancioglu, 2012: Melting of northern Greenland during the last interglaciation. Cryosphere, 6, 12391250, doi:10.5194/tc-6-1239-2012.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land-sea contrast and orography. J. Atmos. Sci., 66, 25392558, doi:10.1175/2009JAS3078.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and I. M. Held, 1988: Stationary waves of the ice age climate. J. Climate, 1, 807819, doi:10.1175/1520-0442(1988)001<0807:SWOTIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dean, R., and W. Dixon, 1951: Simplified statistics for small numbers of observations. Anal. Chem., 23, 636638, doi:10.1021/ac60052a025.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 51495163, doi:10.1175/JCLI4279.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Gladstone, R. M., and Coauthors, 2005: Mid-Holocene NAO: A PMIP2 model intercomparison. Geophys. Res. Lett.,32, L16707, doi:10.1029/2005GL023596.

  • Hannachi, A., E. A. Barnes, and T. Woollings, 2013: Behaviour of the winter North Atlantic eddy-driven jet stream in the CMIP3 integrations. Climate Dyn., 41 (3–4), 9951007, doi:10.1007/s00382-012-1560-4.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2007: The atmospheric general circulation and its variability. J. Meteor. Soc. Japan,85B, 123–143, doi:10.2151/jmsj.85B.123.

  • Held, I. M., M. F. Ting, and H. L. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hofer, D., C. C. Raible, A. Dehnert, and J. Kuhlemann, 2012a: The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region. Climate Past, 8, 935949, doi:10.5194/cp-8-935-2012.

    • Search Google Scholar
    • Export Citation
  • Hofer, D., C. C. Raible, N. Merz, A. Dehnert, and J. Kuhlemann, 2012b: Simulated winter circulation types in the North Atlantic and European region for preindustrial and glacial conditions. Geophys. Res. Lett.,39, L15805, doi:10.1029/2012GL052296.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos Sea Ice Model: Documentation and software user’s manual, version 4.0. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136, 11451160, doi:10.1002/qj.634.

    • Search Google Scholar
    • Export Citation
  • Justino, F., and W. R. Peltier, 2005: The glacial North Atlantic Oscillation. Geophys. Res. Lett., 32, L21803, doi:10.1029/2005GL023822.

    • Search Google Scholar
    • Export Citation
  • Justino, F., A. Timmermann, U. Merkel, and E. P. Souza, 2005: Synoptic reorganization of atmospheric flow during the Last Glacial Maximum. J. Climate, 18, 28262846, doi:10.1175/JCLI3403.1.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and P. J. Valdes, 2000: Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophys. Res. Lett., 27, 15151518, doi:10.1029/1999GL011274.

    • Search Google Scholar
    • Export Citation
  • Kleman, J., J. Fastook, K. Ebert, J. Nilsson, and R. Caballero, 2013: Pre-LGM Northern Hemisphere ice sheet topography. Climate Past, 9, 23652378, doi:10.5194/cp-9-2365-2013.

    • Search Google Scholar
    • Export Citation
  • Laine, A., and Coauthors, 2009: Northern Hemisphere storm tracks during the Last Glacial Maximum in the PMIP2 ocean-atmosphere coupled models: Energetic study, seasonal cycle, precipitation. Climate Dyn., 32, 593614, doi:10.1007/s00382-008-0391-9.

    • Search Google Scholar
    • Export Citation
  • Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 3561–3579, doi:10.1175/2007JCLI2166.1.

    • Search Google Scholar
    • Export Citation
  • Li, C., and J. J. Wettstein, 2012: Thermally driven and eddy-driven jet variability in reanalysis. J. Climate, 25, 15871596, doi:10.1175/JCLI-D-11-00145.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., B. Hoskins, and M. Blackburn, 2007: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan, 85B, 119.

    • Search Google Scholar
    • Export Citation
  • Löfverström, M., R. Caballero, J. Nilsson, and J. Kleman, 2014: Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle. Climate Past, 10, 14531471, doi:10.5194/cp-10-1453-2014.

    • Search Google Scholar
    • Export Citation
  • Mak, M. K., and M. Cai, 1989: Local barotropic instability. J. Atmos. Sci., 46, 32893311, doi:10.1175/1520-0469(1989)046<3289:LBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Climate, 26, 70447059, doi:10.1175/JCLI-D-12-00466.1.

    • Search Google Scholar
    • Export Citation
  • Merz, N., C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker, 2013: Greenland accumulation and its connection to the large-scale atmospheric circulation in ERA-Interim and paleoclimate simulations. Climate Past, 9, 24332450, doi:10.5194/cp-9-2433-2013.

    • Search Google Scholar
    • Export Citation
  • Merz, N., A. Born, C. C. Raible, H. Fischer, and T. F. Stocker, 2014a: Dependence of Eemian Greenland temperature reconstructions on the ice sheet topography. Climate Past, 10, 12211238, doi:10.5194/cp-10-1221-2014.

    • Search Google Scholar
    • Export Citation
  • Merz, N., G. Gfeller, A. Born, C. C. Raible, T. F. Stocker, and H. Fischer, 2014b: Influence of ice sheet topography on Greenland precipitation during the Eemian interglacial. J. Geophys. Res. Atmos.,119, 10 749–10 768, doi:10.1002/2014JD021940.

  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM4). National Center for Atmospheric Research Tech. Rep. NCAR/TN+STR, 194 pp.

  • NEEM community members, 2013: Eemian interglacial reconstructed from a Greenland folded ice core. Nature,493, 489–494, doi:10.1038/nature11789.

  • Oleson, K., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). National Center for Atmospheric Research Tech. Note NCAR/TN-478+STR, 257 pp., doi:10.5065/D6FB50WZ.

  • Pausata, F. S. R., C. Li, J. J. Wettstein, M. Kageyama, and K. H. Nisancioglu, 2011: The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period. Climate Past, 7, 10891101, doi:10.5194/cp-7-1089-2011.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and Grace. Annu. Rev. Earth Planet. Sci., 32, 111149, doi:10.1146/annurev.earth.32.082503.144359.

    • Search Google Scholar
    • Export Citation
  • Riviere, G., A. Laine, G. Lapeyre, D. Salas-Melia, and M. Kageyama, 2010: Links between Rossby wave breaking and the North Atlantic Oscillation–Arctic Oscillation in present-day and Last Glacial Maximum climate simulations. J. Climate, 23, 29873008, doi:10.1175/2010JCLI3372.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, A., R. Calov, and A. Ganopolski, 2011: Greenland ice sheet model parameters constrained using simulations of the Eemian interglacial. Climate Past, 7, 381396, doi:10.5194/cp-7-381-2011.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2011: Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett.,38, L23703, doi:10.1029/2011GL049573.

  • Shaw, T. A., J. Perlwitz, and O. Weiner, 2014: Troposphere-stratosphere coupling: Links to North Atlantic weather and climate, including their representation in CMIP5 models. J. Geophys. Res., 119, 58645880, doi:10.1002/2013JD021191.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1981: Using kernel density estimates to investigate multimodality. J. Roy. Stat. Soc., 43B, 9799.

  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, doi:10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437, doi:10.1175/2009JAS3194.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., C. Czuchnicki, and C. Franzke, 2014: Twentieth century North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 140, 783791, doi:10.1002/qj.2197.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 651 276 24
PDF Downloads 425 116 21