The Link between the North Pacific Climate Variability and the North Atlantic Oscillation via Downstream Propagation of Synoptic Waves

Marie Drouard CNRM-GAME, Météo-France/CNRS, Toulouse, France

Search for other papers by Marie Drouard in
Current site
Google Scholar
PubMed
Close
,
Gwendal Rivière Laboratoire de Météorologie Dynamique/IPSL, École Normale Supérieure/CNRS, Paris, France

Search for other papers by Gwendal Rivière in
Current site
Google Scholar
PubMed
Close
, and
Philippe Arbogast CNRM-GAME, Météo-France/CNRS, Toulouse, France

Search for other papers by Philippe Arbogast in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The North Atlantic Oscillation (NAO) response to the northeast Pacific climate variability is examined using the ERA-40 dataset. The main objective is to validate a mechanism involving downstream wave propagation processes proposed in a recent idealized companion study: a low-frequency planetary-scale ridge (trough) anomaly located in the eastern Pacific–North American sector induces more equatorward (poleward) propagation of synoptic-scale wave packets on its downstream side, which favors the occurrence of anticyclonic (cyclonic) wave breakings in the Atlantic sector and the positive (negative) NAO phase.

The mechanism first provides an interpretation of the canonical impact of the El Niño–Southern Oscillation on the NAO in late winter. The wintertime relationship between the Pacific–North American oscillation (PNA) and the NAO is also investigated. For out-of-phase fluctuations between the PNA and NAO indices (i.e., the most recurrent situation in late winter), the eastern Pacific PNA ridge (trough) anomaly modifies the direction of downstream wave propagation, triggering more anticyclonic (cyclonic) wave breakings over the North Atlantic. For in-phase fluctuations, the effect of the eastern Pacific PNA anomalies is cancelled out by the North American PNA anomalies. The latter anomalies being deeper and more centered in the latitudinal band of downstream wave propagation, they are able to reverse the direction of wave propagation just before waves enter the Atlantic domain. The contrasting relationship between the PNA and NAO is similar to what occurs for the two leading hemispheric EOFs of geopotential height: the northern annular mode (NAM) and the cold ocean–warm land (COWL) pattern. The proposed mechanism provides a physical meaning for the NAM and COWL patterns.

Corresponding author address: Marie Drouard, CNRM-GAME/GMAP/RECYF, Météo-France, 42 Ave. G. Coriolis, 31057 Toulouse CEDEX 1, France. E-mail: marie.drouard@meteo.fr

Abstract

The North Atlantic Oscillation (NAO) response to the northeast Pacific climate variability is examined using the ERA-40 dataset. The main objective is to validate a mechanism involving downstream wave propagation processes proposed in a recent idealized companion study: a low-frequency planetary-scale ridge (trough) anomaly located in the eastern Pacific–North American sector induces more equatorward (poleward) propagation of synoptic-scale wave packets on its downstream side, which favors the occurrence of anticyclonic (cyclonic) wave breakings in the Atlantic sector and the positive (negative) NAO phase.

The mechanism first provides an interpretation of the canonical impact of the El Niño–Southern Oscillation on the NAO in late winter. The wintertime relationship between the Pacific–North American oscillation (PNA) and the NAO is also investigated. For out-of-phase fluctuations between the PNA and NAO indices (i.e., the most recurrent situation in late winter), the eastern Pacific PNA ridge (trough) anomaly modifies the direction of downstream wave propagation, triggering more anticyclonic (cyclonic) wave breakings over the North Atlantic. For in-phase fluctuations, the effect of the eastern Pacific PNA anomalies is cancelled out by the North American PNA anomalies. The latter anomalies being deeper and more centered in the latitudinal band of downstream wave propagation, they are able to reverse the direction of wave propagation just before waves enter the Atlantic domain. The contrasting relationship between the PNA and NAO is similar to what occurs for the two leading hemispheric EOFs of geopotential height: the northern annular mode (NAM) and the cold ocean–warm land (COWL) pattern. The proposed mechanism provides a physical meaning for the NAM and COWL patterns.

Corresponding author address: Marie Drouard, CNRM-GAME/GMAP/RECYF, Météo-France, 42 Ave. G. Coriolis, 31057 Toulouse CEDEX 1, France. E-mail: marie.drouard@meteo.fr
Save
  • Ambaum, M. H., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 34953507, doi:10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., and B. J. Hoskins, 1997: Stationary Rossby-wave propagation in a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 123, 919928, doi:10.1002/qj.49712354007.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144, doi:10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207226, doi:10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., 2007: Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, RG3003, doi:10.1029/2006RG000199.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001: Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: A study with the ARPEGE model. J. Climate, 14, 42664291, doi:10.1175/1520-0442(2001)014<4266:OFOTWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Castanheira, J., and H.-F. Graf, 2003: North Pacific–North Atlantic relationships under stratospheric control? J. Geophys. Res., 108, 4036, doi:10.1029/2002JD002754.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, doi:10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2001: The structure of baroclinic wave packets. J. Atmos. Sci., 58, 16941713, doi:10.1175/1520-0469(2001)058<1694:TSOBWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, doi:10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1994: On energy flux and group velocity of waves in baroclinic flows. J. Atmos. Sci., 51, 38233828, doi:10.1175/1520-0469(1994)051<3823:OEFAGV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642658, doi:10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.” Geophys. Res. Lett., 27, 779782, doi:10.1029/1999GL010945.

  • Dong, B.-W., R. Sutton, S. Jewson, A. O’Neill, and J. Slingo, 2000: Predictable winter climate in the North Atlantic sector during the 1997–1999 ENSO cycle. Geophys. Res. Lett., 27, 985988, doi:10.1029/1999GL010994.

    • Search Google Scholar
    • Export Citation
  • Drouard, M., G. Rivière, and P. Arbogast, 2013: The North Atlantic Oscillation response to large-scale atmospheric anomalies in the northeastern Pacific. J. Atmos. Sci., 70, 28542874, doi:10.1175/JAS-D-12-0351.1.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, doi:10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1990: European grosswetter during the warm and cold extremes of the El Niño/Southern Oscillation. Int. J. Climatol., 10, 2131, doi:10.1002/joc.3370100104.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and K. Müller, 1992: Climate anomalies in Europe associated with ENSO extremes. Int. J. Climatol., 12, 2531, doi:10.1002/joc.3370120104.

    • Search Google Scholar
    • Export Citation
  • Honda, M., and H. Nakamura, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part II: Its significance in the interannual variability over the wintertime Northern Hemisphere. J. Climate, 14, 45124529, doi:10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, M., H. Nakamura, J. Ukita, I. Kousaka, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J. Climate, 14, 10291042, doi:10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, M., S. Yamane, and H. Nakamura, 2007: Inter-basin link between the North Pacific and North Atlantic in the upper tropospheric circulation: Its dominance and seasonal dependence. J. Meteor. Soc. Japan, 85, 899908, doi:10.2151/jmsj.85.899.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape,propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2012a: Impact of ENSO on the atmospheric variability over the North Atlantic in late winter—Role of transient eddies. J. Climate, 25, 320342, doi:10.1175/JCLI-D-11-00037.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2012b: Contributions of downstream eddy development to the teleconnection between ENSO and the atmospheric circulation over the North Atlantic. J. Climate, 25, 49935010, doi:10.1175/JCLI-D-11-00377.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, and G. Brunet, 2005: Tropical Pacific link to the two dominant patterns of atmospheric variability. Geophys. Res. Lett., 32, L03801, doi:10.1029/2004GL021495.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64, 25762592, doi:10.1175/JAS3977.1.

    • Search Google Scholar
    • Export Citation
  • Michel, C., and G. Rivière, 2011: The link between Rossby wave breakings and weather regime transitions. J. Atmos. Sci., 68, 17301748, doi:10.1175/2011JAS3635.1.

    • Search Google Scholar
    • Export Citation
  • Moron, V., and I. Gouirand, 2003: Seasonal modulation of the El Niño–southern oscillation relationship with sea level pressure anomalies over the North Atlantic in October–March 1873–1996. Int. J. Climatol., 23, 143155, doi:10.1002/joc.868.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, doi:10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, doi:10.1034/j.1600-0870.1995.00108.x.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., M. Reyers, and U. Ulbrich, 2011: The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Climate Dyn., 36, 337354, doi:10.1007/s00382-010-0770-x.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vázquez, D., M. Esteban-Parra, F. Rodrigo, and Y. Castro-Diez, 2001: The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region. J. Climate, 14, 34083420, doi:10.1175/1520-0442(2001)014<3408:TABEAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vázquez, D., S. Gámiz-Fortis, J. Tovar-Pescador, M. Esteban-Parra, and Y. Castro-Díez, 2005: El Niño–southern oscillation events and associated European winter precipitation anomalies. Int. J. Climatol., 25, 1731, doi:10.1002/joc.1097.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., and J. M. Wallace, 2004: A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Climate, 17, 37283744, doi:10.1175/1520-0442(2004)017<3728:ASLFFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 15691592, doi:10.1175/2008JAS2919.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, doi:10.1175/JAS3850.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., B. Hua, and P. Klein, 2003: Perturbation growth in terms of barotropic alignment properties. Quart. J. Roy. Meteor. Soc., 129, 26132635, doi:10.1256/qj.02.106.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., P. Arbogast, and A. Joly, 2014: Eddy kinetic energy redistribution within idealized extratropical cyclones using a two-layer quasi-geostrophic model. Quart. J. Roy. Meteor. Soc., 141, 207–223, doi:10.1002/qj.2350.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, M. Ting, M. A. Cane, N. Harnik, and Y. Kushnir, 2010: Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296, doi:10.1002/qj.588.

    • Search Google Scholar
    • Export Citation
  • Song, J., C. Li, W. Zhou, and J. Pan, 2009: The linkage between the Pacific–North American teleconnection pattern and the North Atlantic Oscillation. Adv. Atmos. Sci., 26, 229239, doi:10.1007/s00376-009-0229-3.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008a: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65, 28612876, doi:10.1175/2008JAS2632.1.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008b: How Rossby wave breaking over the Pacific forces the North Atlantic Oscillation. Geophys. Res. Lett., 35, L10716, doi:10.1029/2008GL033578.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, doi:10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The Era-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Van Loon, H., and R. A. Madden, 1981: The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon. Wea. Rev., 109, 11501162, doi:10.1175/1520-0493(1981)109<1150:TSOPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms—one phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791805, doi:10.1002/qj.49712656402.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. W. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15, 19871991, doi:10.1175/1520-0442(2002)015<1987:TPCOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and L. Bajuk, 1996: Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J. Climate, 9, 249259, doi:10.1175/1520-0442(1996)009<0249:IOITIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, doi:10.1175/2007JAS2347.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., and D. M. Straus, 2004: AO, COWL, and observed climate trends. J. Climate, 17, 21392156, doi:10.1175/1520-0442(2004)017<2139:ACAOCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., and G. Moore, 2009: Temporal variability in the expression of the Arctic Oscillation in the North Pacific. J. Climate, 22, 31103126, doi:10.1175/2008JCLI2611.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 882 325 19
PDF Downloads 695 218 13