The Impact of the African Great Lakes on the Regional Climate

Wim Thiery Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

Search for other papers by Wim Thiery in
Current site
Google Scholar
PubMed
Close
,
Edouard L. Davin Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Edouard L. Davin in
Current site
Google Scholar
PubMed
Close
,
Hans-Jürgen Panitz Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Hans-Jürgen Panitz in
Current site
Google Scholar
PubMed
Close
,
Matthias Demuzere Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

Search for other papers by Matthias Demuzere in
Current site
Google Scholar
PubMed
Close
,
Stef Lhermitte Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

Search for other papers by Stef Lhermitte in
Current site
Google Scholar
PubMed
Close
, and
Nicole van Lipzig Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

Search for other papers by Nicole van Lipzig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although the African Great Lakes are important regulators for the East African climate, their influence on atmospheric dynamics and the regional hydrological cycle remains poorly understood. This study aims to assess this impact by comparing a regional climate model simulation that resolves individual lakes and explicitly computes lake temperatures to a simulation without lakes. The Consortium for Small-Scale Modelling model in climate mode (COSMO-CLM) coupled to the Freshwater Lake model (FLake) and Community Land Model (CLM) is used to dynamically downscale a simulation from the African Coordinated Regional Downscaling Experiment (CORDEX-Africa) to 7-km grid spacing for the period of 1999–2008. Evaluation of the model reveals good performance compared to both in situ and satellite observations, especially for spatiotemporal variability of lake surface temperatures (0.68-K bias), and precipitation (−116 mm yr−1 or 8% bias). Model integrations indicate that the four major African Great Lakes almost double the annual precipitation amounts over their surface but hardly exert any influence on precipitation beyond their shores. Except for Lake Kivu, the largest lakes also cool the annual near-surface air by −0.6 to −0.9 K on average, this time with pronounced downwind influence. The lake-induced cooling happens during daytime, when the lakes absorb incoming solar radiation and inhibit upward turbulent heat transport. At night, when this heat is released, the lakes warm the near-surface air. Furthermore, Lake Victoria has a profound influence on atmospheric dynamics and stability, as it induces circular airflow with over-lake convective inhibition during daytime and the reversed pattern at night. Overall, this study shows the added value of resolving individual lakes and realistically representing lake surface temperatures for climate studies in this region.

Corresponding author address: Wim Thiery, Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium. E-mail: wim.thiery@ees.kuleuven.be

Abstract

Although the African Great Lakes are important regulators for the East African climate, their influence on atmospheric dynamics and the regional hydrological cycle remains poorly understood. This study aims to assess this impact by comparing a regional climate model simulation that resolves individual lakes and explicitly computes lake temperatures to a simulation without lakes. The Consortium for Small-Scale Modelling model in climate mode (COSMO-CLM) coupled to the Freshwater Lake model (FLake) and Community Land Model (CLM) is used to dynamically downscale a simulation from the African Coordinated Regional Downscaling Experiment (CORDEX-Africa) to 7-km grid spacing for the period of 1999–2008. Evaluation of the model reveals good performance compared to both in situ and satellite observations, especially for spatiotemporal variability of lake surface temperatures (0.68-K bias), and precipitation (−116 mm yr−1 or 8% bias). Model integrations indicate that the four major African Great Lakes almost double the annual precipitation amounts over their surface but hardly exert any influence on precipitation beyond their shores. Except for Lake Kivu, the largest lakes also cool the annual near-surface air by −0.6 to −0.9 K on average, this time with pronounced downwind influence. The lake-induced cooling happens during daytime, when the lakes absorb incoming solar radiation and inhibit upward turbulent heat transport. At night, when this heat is released, the lakes warm the near-surface air. Furthermore, Lake Victoria has a profound influence on atmospheric dynamics and stability, as it induces circular airflow with over-lake convective inhibition during daytime and the reversed pattern at night. Overall, this study shows the added value of resolving individual lakes and realistically representing lake surface temperatures for climate studies in this region.

Corresponding author address: Wim Thiery, Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium. E-mail: wim.thiery@ees.kuleuven.be
Save
  • Akkermans, T., 2013: Modeling land-atmosphere interactions in tropical Africa: The climatic impact of deforestation in the Congo Basin. Ph.D. thesis, KU Leuven, 160 pp.

  • Akkermans, T., and Coauthors, 2012: Validation and comparison of two soil–vegetation–atmosphere transfer models for tropical Africa. J. Geophys. Res.,117, G02013, doi:10.1029/2011JG001802.

  • Akkermans, T., W. Thiery, and N. P. M. Van Lipzig, 2014: The regional climate impact of a realistic future deforestation scenario in the Congo basin. J. Climate, 27, 27142734, doi:10.1175/JCLI-D-13-00361.1.

    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., and F. H. M. Semazzi, 2004: Simulation of the sensitivity of Lake Victoria basin climate to lake surface temperatures. Theor. Appl. Climatol., 79, 5569, doi:10.1007/s00704-004-0057-4.

    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., and F. H. M. Semazzi, 2006: Climate variability over the Greater Horn of Africa based on NCAR AGCM ensemble. Theor. Appl. Climatol., 86, 3962, doi:10.1007/s00704-005-0203-7.

    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., and F. H. M. Semazzi, 2007: Variability of East African rainfall based on multiyear RegCM3 simulations. Int. J. Climatol., 27, 357371, doi:10.1002/joc.1401.

    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., and F. H. M. Semazzi, 2009: Idealized simulation of hydrodynamic characteristics of Lake Victoria that potentially modulate regional climate. Int. J. Climatol., 29, 971981, doi:10.1002/joc.1795.

    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., F. H. M. Semazzi, and L. Xie, 2006: Simulated physical mechanisms associated with climate variability over Lake Victoria basin in East Africa. Mon. Wea. Rev., 134, 35883609, doi:10.1175/MWR3266.1.

    • Search Google Scholar
    • Export Citation
  • Argent, R., X. Sun, F. H. M. Semazzi, L. Xie, and B. Liu, 2015: The development of a customization framework for the WRF Model over the Lake Victoria basin, Eastern Africa on seasonal timescales. Adv. Meteorol., 2015,653473, doi:10.1155/2015/653473.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., R. Salgado, E. Dutra, S. Boussetta, T. Stockdale, and M. Potes, 2012: On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus,64A, 15829, doi:10.3402/tellusa.v64i0.15829.

  • Bates, G., S. Hostetler, and F. Giorgi, 1995: Two-year simulation of the Great Lakes region with a coupled modeling system. Mon. Wea. Rev., 123, 15051522, doi:10.1175/1520-0493(1995)123<1505:TYSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennington, V., M. Notaro, and K. D. Holman, 2014: Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate. J. Climate, 27, 2886–2911, doi:10.1175/JCLI-D-13-00110.1.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1995: Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Climate, 8, 26912704, doi:10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 31233149, doi:10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and D. W. Burbank, 2006: Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett.,33, L08405, doi:10.1029/2006GL026037.

  • Bookhagen, B., and M. R. Strecker, 2008: Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys. Res. Lett.,35, L06403, doi:10.1029/2007GL032011.

  • Burbank, D. W., B. Bookhagen, E. J. Gabet, and J. Putkonen, 2012: Modern climate and erosion in the Himalaya. C. R. Geosci., 344, 610626, doi:10.1016/j.crte.2012.10.010.

    • Search Google Scholar
    • Export Citation
  • Climate Prediction Center, 2011: NOAA CPC Morphing Technique (CMORPH) Global Precipitation Analyses. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 13 June 2014. [Available online at http://rda.ucar.edu/datasets/ds502.0/.]

  • Coe, M., and G. Bonan, 1997: Feedbacks between climate and surface water in northern Africa during the middle Holocene. J. Geophys. Res.,102, 11 087–11 101, doi:10.1029/97JD00343.

  • Crétat, J., E. K. Vizy, and K. H. Cook, 2014: How well are daily intense rainfall events captured by current climate models over Africa? Climate Dyn., 42, 26912711, doi:10.1007/s00382-013-1796-7.

    • Search Google Scholar
    • Export Citation
  • Darchambeau, F., H. Sarmento, and J.-P. Descy, 2014: Primary production in a tropical large lake: The role of phytoplankton composition. Sci. Total Environ., 473–474, 178188, doi:10.1016/j.scitotenv.2013.12.036.

    • Search Google Scholar
    • Export Citation
  • Datta, R. K., 1981: Certain aspects of monsoonal precipitation dynamics over Lake Victoria. Monsoon Dynamics, J. Lighthill and R. P. Pearce, Eds., Cambridge University Press, 333–349.

  • Davies, H., 1983: Limitations of some common lateral boundary schemes used in regional NWP models. Mon. Wea. Rev., 111, 10021012, doi:10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davin, E. L., and S. I. Seneviratne, 2012: Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate. Biogeosciences, 9, 16951707, doi:10.5194/bg-9-1695-2012.

    • Search Google Scholar
    • Export Citation
  • Davin, E. L., R. Stöckli, E. B. Jaeger, S. Levis, and S. I. Seneviratne, 2011: COSMO-CLM2: A new version of the COSMO-CLM model coupled to the Community Land Model. Climate Dyn., 37, 18891907, doi:10.1007/s00382-011-1019-z.

    • Search Google Scholar
    • Export Citation
  • Davin, E. L., S. I. Seneviratne, P. Ciais, A. Olioso, and T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA, 111, 97579761, doi:10.1073/pnas.1317323111.

    • Search Google Scholar
    • Export Citation
  • De Boor, C., 1978: A Practical Guide to Splines. Applied Mathematical Sciences, Vol. 27, Springer-Verlag, 348 pp.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., S. Chidzambwa, P. Ceccato, S. J. Connor, and C. F. Ropelewski, 2008: Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens., 29, 40974110, doi:10.1080/01431160701772526.

    • Search Google Scholar
    • Export Citation
  • Doms, G., 2011: A description of the nonhydrostatic regional COSMO-Model. Part I: Dynamics and numerics. COSMO Tech. Rep., 153 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf.]

  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO Model. Part II: Physical parameterization. COSMO Tech. Rep., 161 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.]

  • Dosio, A., H.-J. Panitz, M. Schubert-Frisius, and D. Lüthi, 2015: Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: Evaluation over the present climate and analysis of the added value. Climate Dyn., 44, 2637–2661, doi:10.1007/s00382-014-2262-x.

    • Search Google Scholar
    • Export Citation
  • Endris, H. S., and Coauthors, 2013: Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J. Climate, 26, 84538475, doi:10.1175/JCLI-D-12-00708.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, and G. Asrar, 2009: Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Gourgue, O., E. Deleersnijder, and L. White, 2007: Toward a generic method for studying water renewal, with application to the epilimnion of Lake Tanganyika. Estuarine Coastal Shelf Sci., 74, 628640, doi:10.1016/j.ecss.2007.05.009.

    • Search Google Scholar
    • Export Citation
  • Goyens, C., D. Lauwaet, M. Schröder, M. Demuzere, and N. P. M. Van Lipzig, 2012: Tracking mesoscale convective systems in the Sahel: Relation between cloud parameters and precipitation. Int. J. Climatol., 32, 19211934, doi:10.1002/joc.2407.

    • Search Google Scholar
    • Export Citation
  • Goyette, S., N. McFarlane, and G. M. Flato, 2000: Application of the Canadian regional climate model to the Laurentian great lakes region: Implementation of a lake model. Atmos.–Ocean, 38, 481503, doi:10.1080/07055900.2000.9649657.

    • Search Google Scholar
    • Export Citation
  • Grasselt, R., D. Schüttemeyer, K. Warrach-Sagi, F. Ament, and C. Simmer, 2008: Validation of TERRA-ML with discharge measurements. Meteor. Z., 17, 763773, doi:10.1127/0941-2948/2008/0334.

    • Search Google Scholar
    • Export Citation
  • Gu, H., J. Jin, Y. Wu, M. B. Ek, and Z. M. Subin, 2015: Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Climatic Change, 129, 471–483, doi:10.1007/s10584-013-0978-y.

    • Search Google Scholar
    • Export Citation
  • Gula, J., and W. R. Peltier, 2012: Dynamical downscaling over the Great Lakes basin of North America using the WRF Regional Climate Model: The impact of the Great Lakes system on regional greenhouse warming. J. Climate, 25, 77237742, doi:10.1175/JCLI-D-11-00388.1.

    • Search Google Scholar
    • Export Citation
  • Hernández-Díaz, L., R. Laprise, L. Sushama, A. Martynov, K. Winger, and B. Dugas, 2013: Climate simulation over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Climate Dyn., 40, 14151433, doi:10.1007/s00382-012-1387-z.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., and F. Giorgi, 1995: Effects of a 2 × CO2 climate on two large lake systems: Pyramid Lake, Nevada, and Yellowstone Lake, Wyoming. Global Planet. Change, 10, 4354, doi:10.1016/0921-8181(94)00019-A.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., F. Giorgi, G. T. Bates, and P. J. Bartlein, 1994: Lake–atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Science, 263, 665668, doi:10.1126/science.263.5147.665.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., R. Adler, M. Morrissey, D. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2,3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacobs, L., O. Dewitte, J. Poesen, D. Delvaux, W. Thiery, and M. Kervyn, 2015: The Rwenzori Mountians, a landslide-prone region? Landslides, in press.

    • Search Google Scholar
    • Export Citation
  • Joyce, R., J. Janowiak, P. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Juang, J.-Y., G. Katul, M. Siqueira, P. Stoy, and K. Novick, 2007: Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett.,34, L21408, doi:10.1029/2007GL031296.

  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, doi:10.5194/bg-6-2001-2009.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., and Y. Z. Miropolskii, 1970: On the theory of the open ocean active layer. Izv., Atmos. Ocean. Phys., 6, 97102.

    • Search Google Scholar
    • Export Citation
  • Kourzeneva, E., 2010: External data for lake parameterization in Numerical Weather Prediction and climate modeling. Boreal Environ. Res., 15, 165177.

    • Search Google Scholar
    • Export Citation
  • Kourzeneva, E., H. Asensio, E. Martin, and S. Faroux, 2012: Global gridded dataset of lake coverage and lake depth for use in numerical weather prediction and climate modelling. Tellus,64A, 15640, doi:10.3402/tellusa.v64i0.15640.

  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., and Coauthors, 2008: Challenging some tenets of regional climate modelling. Meteor. Atmos. Phys., 100, 322, doi:10.1007/s00703-008-0292-9.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., L. Hernández-Díaz, K. Tete, L. Sushama, L. Šeparović, A. Martynov, K. Winger, and M. Valin, 2013: Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Climate Dyn., 41, 32193246, doi:10.1007/s00382-012-1651-2.

    • Search Google Scholar
    • Export Citation
  • Lauwaet, D., N. P. M. Lipzig, and K. Ridder, 2009: The effect of vegetation changes on precipitation and Mesoscale Convective Systems in the Sahel. Climate Dyn., 33, 521534, doi:10.1007/s00382-009-0539-2.

    • Search Google Scholar
    • Export Citation
  • Lauwaet, D., N. P. M. van Lipzig, K. Van Weverberg, K. De Ridder, and C. Goyens, 2012: The precipitation response to the desiccation of Lake Chad. Quart. J. Roy. Meteor. Soc., 138, 707719, doi:10.1002/qj.942.

    • Search Google Scholar
    • Export Citation
  • Legates, D., and C. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, doi:10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Lejeune, Q., E. Davin, B. Guillod, and S. Seneviratne, 2015: Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Climate Dyn., 44, 2769–2786, doi:10.1007/s00382-014-2203-8.

    • Search Google Scholar
    • Export Citation
  • Lorenz, R., E. L. Davin, and S. I. Seneviratne, 2012: Modeling land-climate coupling in Europe: Impact of land surface representation on climate variability and extremes. J. Geophys. Res.,117, D20109, doi:10.1029/2012JD017755.

  • Luyssaert, S., and Coauthors, 2014: Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Climate Change, 4, 389393, doi:10.1038/nclimate2196.

    • Search Google Scholar
    • Export Citation
  • MacCallum, S., and C. Merchant, 2012: Surface water temperature observations of large lakes by optimal estimation. Can. J. Remote Sens., 38, 25–45, doi:10.5589/m12-010.

    • Search Google Scholar
    • Export Citation
  • MacIntyre, S., 2012: Climatic variability, mixing dynamics, and ecological consequences in the African Great Lakes. Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, C. R. Goldman, M. Kumagai, and R. D. Robarts, Eds., John Wiley & Sons, Inc., 311–337, doi:10.1002/9781118470596.ch18.

  • MacIntyre, S., J. R. Romero, G. M. Silsbe, and B. M. Emery, 2014: Stratification and horizontal exchange in Lake Victoria, East Africa. Limnol. Oceanogr., 59, 18051838, doi:10.4319/lo.2014.59.6.1805.

    • Search Google Scholar
    • Export Citation
  • Martynov, A., L. Sushama, R. Laprise, K. Winger, and B. Dugas, 2012: Interactive lakes in the Canadian Regional Climate Model, version 5: The role of lakes in the regional climate of North America. Tellus, 64A, 16226, doi:10.3402/tellusa.v64i0.16226.

    • Search Google Scholar
    • Export Citation
  • Mironov, D. V., 2008: Parameterization of lakes in numerical weather prediction. Part 1: Description of a lake model. COSMO Tech. Rep. 11, 47 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport11.pdf.]

  • Mironov, D. V., E. Heise, E. Kourzeneva, B. Ritter, N. Schneider, and A. Terzhevik, 2010: Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res., 15, 218230.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci., 17, 37073720, doi:10.5194/hess-17-3707-2013.

    • Search Google Scholar
    • Export Citation
  • Naithani, J., and E. Deleersnijder, 2004: Are there internal Kelvin waves in Lake Tanganyika? Geophys. Res. Lett.,31, L06303, doi:10.1029/2003GL019156.

  • Naithani, J., E. Deleersnijder, and P.-D. Plisnier, 2002: Origin of intraseasonal variability in Lake Tanganyika. Geophys. Res. Lett., 29, 2093, doi:10.1029/2002GL015843.

    • Search Google Scholar
    • Export Citation
  • Naithani, J., E. Deleersnijder, and P.-D. Plisnier, 2003: Analysis of wind-induced thermocline oscillations of Lake Tanganyika. Environ. Fluid Mech., 3, 2339, doi:10.1023/A:1021116727232.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S., 1996: A review of climate dynamics and climate variability in Eastern Africa. The Limnology, Climatology and Paleoclimatology of the East African Lakes, T. Johnson and E. Odada, Eds., CRC Press, 25–56.

  • Nikulin, G., and Coauthors, 2012: Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Climate, 25, 60576078, doi:10.1175/JCLI-D-11-00375.1.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., K. Holman, A. Zarrin, E. Fluck, S. Vavrus, and V. Bennington, 2013: Influence of the Laurentian Great Lakes on regional climate. J. Climate, 26, 789804, doi:10.1175/JCLI-D-12-00140.1.

    • Search Google Scholar
    • Export Citation
  • Nyeko-Ogiramoi, P., G. Ngirane-Katashaya, P. Willems, and V. Ntegeka, 2010: Evaluation and inter-comparison of Global Climate Models’ performance over Katonga and Ruizi catchments in Lake Victoria basin. Phys. Chem. Earth, 35, 618633, doi:10.1016/j.pce.2010.07.037.

    • Search Google Scholar
    • Export Citation
  • Nyeko-Ogiramoi, P., P. Willems, and G. Ngirane-Katashaya, 2013: Trend and variability in observed hydrometeorological extremes in the Lake Victoria basin. J. Hydrol., 489, 5673, doi:10.1016/j.jhydrol.2013.02.039.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 186 pp., doi:10.5065/D6N877R0.

  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res.,113, G01021, doi:10.1029/2007JG000563.

  • Panitz, H.-J., A. Dosio, M. Büchner, D. Lüthi, and K. Keuler, 2014: COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: Analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution. Climate Dyn., 42, 30153038, doi:10.1007/s00382-013-1834-5.

    • Search Google Scholar
    • Export Citation
  • Perroud, M., and S. Goyette, 2009: Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one-dimensional lake models. Limnol. Oceanogr., 54, 15741594, doi:10.4319/lo.2009.54.5.1574.

    • Search Google Scholar
    • Export Citation
  • Plisnier, P.-D., S. Serneels, and E. Lambin, 2000: Impact of ENSO on East African ecosystems: A multivariate analysis based on climate and remote sensing data. Global Ecol. Biogeogr., 9, 481497, doi:10.1046/j.1365-2699.2000.00208.x.

    • Search Google Scholar
    • Export Citation
  • Plisnier, P.-D., and Coauthors, 2009: Limnological variability and pelagic fish abundance (Stolothrissa tanganicae and Lates stappersii) in Lake Tanganyika. Hydrobiologia, 625, 117134, doi:10.1007/s10750-009-9701-4.

    • Search Google Scholar
    • Export Citation
  • Raschendorfer, M., 2001: The new turbulence parameterization of LM. COSMO newsletter, No. 1, Deutscher Wetterdienst, Offenbach, Germany, 90–98. [Available online at http://cosmo-model.cscs.ch/content/model/documentation/newsLetters/newsLetter01/newsLetter_01.pdf.]

  • Read, J. S., and Coauthors, 2012: Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys. Res. Lett.,39, L09405, doi:10.1029/2012GL051886.

  • Ritter, B., and J. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rockel, B., A. Will, and A. Hense, 2008: The Regional Climate Model COSMO-CLM (CCLM). Meteor. Z., 17, 347348, doi:10.1127/0941-2948/2008/0309.

    • Search Google Scholar
    • Export Citation
  • Rooney, G., and F. Bornemann, 2013: The performance of FLake in the Met Office Unified Model. Tellus,1A, 21363, doi:10.3402/tellusa.v65i0.21363.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., A. Becker, and U. Schneider, 2011: New GPCC full data reanalysis version 5 provides high-quality gridded monthly precipitation data. GEWEX News, Vol. 21, No. 2, International GEWEX Project Office, Silver Spring, MD, 45.

    • Search Google Scholar
    • Export Citation
  • Saeed, F., A. Haensler, T. Weber, S. Hagemann, and D. Jacob, 2013: Representation of extreme precipitation events leading to opposite climate change signals over the Congo basin. Atmosphere, 4, 254271, doi:10.3390/atmos4030254.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., E. Kourzeneva, and D. Mironov, 2010: The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res., 15, 113129.

    • Search Google Scholar
    • Export Citation
  • Savijärvi, H., 1997: Diurnal winds around Lake Tanganyika. Quart. J. Roy. Meteor. Soc., 123, 901918, doi:10.1002/qj.49712354006.

  • Savijärvi, H., and S. Järvenoja, 2000: Aspects of the fine-scale climatology over Lake Tanganyika as resolved by a mesoscale model. Meteor. Atmos. Phys., 73, 7788, doi:10.1007/s007030050066.

    • Search Google Scholar
    • Export Citation
  • Schmid, M., and A. Wüest, 2012: Stratification, mixing and transport processes in Lake Kivu. Lake Kivu: Limnology and Biogeochemistry of a Tropical Great Lake, J.-P. Descy, F. Darchambeau, and M. Schmid, Eds., Springer, 13–29, doi:10.1007/978-94-007-4243-7.

  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Sellers, P., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502509, doi:10.1126/science.275.5299.502.

    • Search Google Scholar
    • Export Citation
  • Semazzi, F. H. M., 2011: Enhancing safety of navigation and efficient exploitation of natural resources over Lake Victoria and its basin by strengthening meteorological services on the lake. North Carolina State University Climate Modeling Laboratory Tech. Rep., 104 pp. [Available online at http://climlab02.meas.ncsu.edu/HYVIC/Final_Report_LVBC.pdf.]

  • Song, Y., F. H. M. Semazzi, L. Xie, and L. J. Ogallo, 2004: A coupled regional climate model for the Lake Victoria basin of East Africa. Int. J. Climatol., 24, 5775, doi:10.1002/joc.983.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., S. K. Gupta, S. J. Cox, T. Zhang, J. C. Mikovitz, and L. M. Hinkelman, 2011: 24.5-year surface radiation budget data set released. GEWEX News, Vol. 21, No. 1, International GEWEX Project Office, Silver Spring, MD, 1012.

    • Search Google Scholar
    • Export Citation
  • Stepanenko, V., S. Goyette, A. Martynov, M. Perroud, X. Fang, and D. Mironov, 2010: First steps of a Lake Model Intercomparison Project: LakeMIP. Boreal Environ. Res., 15, 191202.

    • Search Google Scholar
    • Export Citation
  • Stepanenko, V., and Coauthors, 2013: A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake. Geosci. Model Dev., 6, 13371352, doi:10.5194/gmd-6-1337-2013.

    • Search Google Scholar
    • Export Citation
  • Stepanenko, V., K. Jöhnk, and E. Machulskaya, 2014: Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models. Tellus,66A, 21389, doi:10.3402/tellusa.v66.21389.

  • Stöckli, R., and Coauthors, 2008: Use of FLUXNET in the Community Land Model development. J. Geophys. Res.,113, G01025, doi:10.1029/2007JG000562.

  • Subin, Z. M., L. N. Murphy, F. Li, C. Bonfils, and W. J. Riley, 2012: Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: Analyses in the Community Earth System Model 1 (CESM1). Tellus, 64A, 15639, doi:10.3402/tellusa.v64i0.15639.

    • Search Google Scholar
    • Export Citation
  • Sun, L., F. Semazzi, F. Giorgi, and L. Ogallo, 1999: Application of the NCAR regional climate model to eastern Africa: 1. Simulation of the short rains of 1988. J. Geophys. Res., 104, 65296548, doi:10.1029/1998JD200051.

    • Search Google Scholar
    • Export Citation
  • Sun, X., L. Xie, F. H. M. Semazzi, and B. Liu, 2014a: Effect of lake surface temperature on the spatial distribution and intensity of the precipitation over the Lake Victoria basin. Mon. Wea. Rev., 143, 1179–1192, doi:10.1175/MWR-D-14-00049.1.

    • Search Google Scholar
    • Export Citation
  • Sun, X., L. Xie, F. H. M. Semazzi, and B. Liu, 2014b: A numerical investigation of the precipitation over Lake Victoria basin using a coupled atmosphere-lake limited-area model. Adv. Meteorol., 2014, 960924, doi:10.1155/2014/960924.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., F. Giorgi, E. Coppola, and L. Mariotti, 2013: Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Climatol., 33, 18051817, doi:10.1002/joc.3551.

    • Search Google Scholar
    • Export Citation
  • Thiery, W., A. Martynov, F. Darchambeau, J.-P. Descy, P.-D. Plisnier, L. Sushama, and N. P. M. van Lipzig, 2014a: Understanding the performance of the FLake model over two African Great Lakes. Geosci. Model Dev., 7, 317337, doi:10.5194/gmd-7-317-2014.

    • Search Google Scholar
    • Export Citation
  • Thiery, W., and Coauthors, 2014b: LakeMIP Kivu: Evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models. Tellus,66A, 21390, doi:10.3402/tellusa.v66.21390.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vanden Broucke, S., S. Luyssaert, E. Davin, I. Janssens, and N. P. M. van Lipzig, 2015: Temperature decomposition of paired site observations reveals new insights in climate models’ capability to simulate the impact of LUC. J. Geophys. Res., in press.

  • Verburg, P., and J. P. Antenucci, 2010: Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. J. Geophys. Res., 115, 5347, doi:10.1029/2009JD012839.

    • Search Google Scholar
    • Export Citation
  • Verburg, P., J. P. Antenucci, and R. E. Hecky, 2011: Differential cooling drives large-scale convective circulation in Lake Tanganyika. Limnol. Oceanogr., 56, 910926, doi:10.4319/lo.2011.56.3.0910.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2012: Mid-twenty-first-century changes in extreme events over northern and Tropical Africa. J. Climate, 25, 57485767, doi:10.1175/JCLI-D-11-00693.1.

    • Search Google Scholar
    • Export Citation
  • Williams, K., J. Chamberlain, C. Buontempo, and C. Bain, 2015: Regional climate model performance in the Lake Victoria basin. Climate Dyn., 44, 1699–1713, doi:10.1007/s00382-014-2201-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2661 1116 102
PDF Downloads 1437 457 52