How Climate Model Complexity Influences Sea Ice Stability

Till J. W. Wagner University of California, San Diego, La Jolla, California

Search for other papers by Till J. W. Wagner in
Current site
Google Scholar
PubMed
Close
and
Ian Eisenman University of California, San Diego, La Jolla, California

Search for other papers by Ian Eisenman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Record lows in Arctic sea ice extent have been making frequent headlines in recent years. The change in albedo when sea ice is replaced by open water introduces a nonlinearity that has sparked an ongoing debate about the stability of the Arctic sea ice cover and the possibility of Arctic “tipping points.” Previous studies identified instabilities for a shrinking ice cover in two types of idealized climate models: (i) annual-mean latitudinally varying diffusive energy balance models (EBMs) and (ii) seasonally varying single-column models (SCMs). The instabilities in these low-order models stand in contrast with results from comprehensive global climate models (GCMs), which typically do not simulate any such instability. To help bridge the gap between low-order models and GCMs, an idealized model is developed that includes both latitudinal and seasonal variations. The model reduces to a standard EBM or SCM as limiting cases in the parameter space, thus reconciling the two previous lines of research. It is found that the stability of the ice cover vastly increases with the inclusion of spatial communication via meridional heat transport or a seasonal cycle in solar forcing, being most stable when both are included. If the associated parameters are set to values that correspond to the current climate, the ice retreat is reversible and there is no instability when the climate is warmed. The two parameters have to be reduced by at least a factor of 3 for instability to occur. This implies that the sea ice cover may be substantially more stable than has been suggested in previous idealized modeling studies.

Corresponding author address: Till J. W. Wagner, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037. E-mail: tjwagner@ucsd.edu

Abstract

Record lows in Arctic sea ice extent have been making frequent headlines in recent years. The change in albedo when sea ice is replaced by open water introduces a nonlinearity that has sparked an ongoing debate about the stability of the Arctic sea ice cover and the possibility of Arctic “tipping points.” Previous studies identified instabilities for a shrinking ice cover in two types of idealized climate models: (i) annual-mean latitudinally varying diffusive energy balance models (EBMs) and (ii) seasonally varying single-column models (SCMs). The instabilities in these low-order models stand in contrast with results from comprehensive global climate models (GCMs), which typically do not simulate any such instability. To help bridge the gap between low-order models and GCMs, an idealized model is developed that includes both latitudinal and seasonal variations. The model reduces to a standard EBM or SCM as limiting cases in the parameter space, thus reconciling the two previous lines of research. It is found that the stability of the ice cover vastly increases with the inclusion of spatial communication via meridional heat transport or a seasonal cycle in solar forcing, being most stable when both are included. If the associated parameters are set to values that correspond to the current climate, the ice retreat is reversible and there is no instability when the climate is warmed. The two parameters have to be reduced by at least a factor of 3 for instability to occur. This implies that the sea ice cover may be substantially more stable than has been suggested in previous idealized modeling studies.

Corresponding author address: Till J. W. Wagner, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037. E-mail: tjwagner@ucsd.edu
Save
  • Abbot, D. S., M. Silber, and R. T. Pierrehumbert, 2011: Bifurcations leading to summer Arctic sea ice loss. J. Geophys. Res.,116, D19120, doi:10.1029/2011JD015653.

  • Armour, K. C., I. Eisenman, E. Blanchard-Wrigglesworth, K. E. McCusker, and C. M. Bitz, 2011: The reversibility of sea ice loss in a state-of-the-art climate model. Geophys. Res. Lett.,38, L16705, doi:10.1029/2011GL048739.

  • Bendtsen, J., 2002: Climate sensitivity to changes in solar insolation in a simple coupled climate model. Climate Dyn., 18, 595609, doi:10.1007/s00382-001-0198-4.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and G. H. Roe, 2001: Ice and climate modeling: Course notes. [Available online at http://www.atmos.washington.edu/~bitz/.]

  • Bitz, C. M., and G. H. Roe, 2004: A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Climate, 17, 36233632, doi:10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Björk, G., and J. Söderkvist, 2002: Dependence of the Arctic Ocean ice thickness distribution on the poleward energy flux in the atmosphere. J. Geophys. Res., 107, 3173, doi:10.1029/2000JC000723.

    • Search Google Scholar
    • Export Citation
  • Björk, G., C. Stranne, and K. Borenäs, 2013: The sensitivity of the Arctic Ocean sea ice thickness and its dependence on the surface albedo parameterization. J. Climate, 26, 13551370, doi:10.1175/JCLI-D-12-00085.1.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1966: Polar ice and climate (in Russian). Gidrometeoizdat, 32 pp.

  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21A, 611619, doi:10.1111/j.2153-3490.1969.tb00466.x.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1972: The future climate. Eos, Trans. Amer. Geophys. Union, 53, 868–874, doi:10.1029/EO053i010p00868.

  • Cahalan, R. F., and G. R. North, 1979: A stability theorem for energy-balance climate models. J. Atmos. Sci., 36, 11781188, doi:10.1175/1520-0469(1979)036<1178:ASTFEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Croll, J., 1875: Climate and Time in their Geological Relations. Cambridge University Press, 577 pp.

  • Eisenman, I., 2007: Arctic catastrophes in an idealized sea ice model. WHOI Tech. Rep. 2007-2, Woods Hole Oceanographic Institution, 161 pp.

  • Eisenman, I., 2010: Geographic muting of changes in the Arctic sea ice cover. Geophys. Res. Lett.,37, L16501, doi:10.1029/2010GL043741.

  • Eisenman, I., 2012: Factors controlling the bifurcation structure of sea ice retreat. J. Geophys. Res.,117, D01111, doi:10.1029/2011JD016164.

  • Eisenman, I., and J. S. Wettlaufer, 2009: Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Natl. Acad. Sci. USA, 106, 2832, doi:10.1073/pnas.0806887106.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and B. Rose, 2011: Climate determinism revisited: Multiple equilibria in a complex climate model. J. Climate, 24, 9921012, doi:10.1175/2010JCLI3580.1.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and R. D. Brown, 1996: Variability and climate sensitivity of landfast Arctic sea ice. J. Geophys. Res., 101, 25 767–25 777, doi:10.1029/96JC02431.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., P. A. Stott, D. J. Cresswell, N. A. Rayner, C. Gordon, and D. M. H. Sexton, 2002: Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett., 29, 2175, doi:10.1029/2001GL014575.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1974: Simple albedo feedback models of the icecaps. Tellus, 26A, 613629, doi:10.1111/j.2153-3490.1974.tb01641.x.

    • Search Google Scholar
    • Export Citation
  • Huang, J., and K. P. Bowman, 1992: The small ice cap instability in seasonal energy balance models. Climate Dyn., 7, 205215, doi:10.1007/BF00206862.

    • Search Google Scholar
    • Export Citation
  • Langen, P. L., and V. A. Alexeev, 2004: Multiple equilibria and asymmetric climates in the CCM3 coupled to an oceanic mixed layer with thermodynamic sea ice. Geophys. Res. Lett.,31, L04201, doi:10.1029/2003GL019039.

  • Li, C., D. Notz, S. Tietsche, and J. Marotzke, 2013: The transient versus the equilibrium response of sea ice to global warming. J. Climate, 26, 56245636, doi:10.1175/JCLI-D-12-00492.1.

    • Search Google Scholar
    • Export Citation
  • Lian, M. S., and R. D. Cess, 1977: Energy balance climate models: A reappraisal of ice–albedo feedback. J. Atmos. Sci., 34, 10581062, doi:10.1175/1520-0469(1977)034<1058:EBCMAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, R. Q., and G. R. North, 1990: A study of abrupt climate change in a simple nonlinear climate model. Climate Dyn., 4, 253–261, doi:10.1007/BF00211062.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1977: Some realistic modifications of simple climate models. J. Atmos. Sci., 34, 14871501, doi:10.1175/1520-0469(1977)034<1487:SRMOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 15501575, doi:10.1029/JC076i006p01550.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and M. G. McPhee, 1995: Solar heating of the Arctic mixed layer. J. Geophys. Res., 100 (C12), 24 691–24 703, doi:10.1029/95JC02554.

    • Search Google Scholar
    • Export Citation
  • Mengel, J. G., D. A. Short, and G. R. North, 1988: Seasonal snowline instability in an energy balance model. Climate Dyn., 2, 127131, doi:10.1007/BF01053470.

    • Search Google Scholar
    • Export Citation
  • Moon, W., and J. S. Wettlaufer, 2011: A low-order theory of Arctic sea ice stability. Europhys. Lett., 96, 39001, doi:10.1209/0295-5075/96/39001.

    • Search Google Scholar
    • Export Citation
  • Moon, W., and J. S. Wettlaufer, 2012: On the existence of stable seasonally varying Arctic sea ice in simple models. J. Geophys. Res.,117, C07007, doi:10.1029/2012JC008006.

  • Moon, W., and J. S. Wettlaufer, 2013: A stochastic perturbation theory for non-autonomous systems. J. Math. Phys., 54, 123303, doi:10.1063/1.4848776.

    • Search Google Scholar
    • Export Citation
  • Morales Maqueda, M., A. J. Willmott, J. L. Bamber, and M. S. Darby, 1998: An investigation of the small ice cap instability in the Southern Hemisphere with a coupled atmosphere–sea ice–ocean–terrestrial ice model. Climate Dyn., 14, 329352, doi:10.1007/s003820050227.

    • Search Google Scholar
    • Export Citation
  • Müller-Stoffels, M., and R. Wackerbauer, 2011: Regular network model for the sea ice-albedo feedback in the Arctic. Chaos,21, 013111, doi:10.1063/1.3555835.

    • Search Google Scholar
    • Export Citation
  • Müller-Stoffels, M., and R. Wackerbauer, 2012: Albedo parametrization and reversibility of sea ice decay. Nonlinear Processes Geophys., 19, 8194, doi:10.5194/npg-19-81-2012.

    • Search Google Scholar
    • Export Citation
  • North, G. R., 1975a: Analytical solution to a simple climate model with diffusive heat transport. J. Atmos. Sci., 32, 13011307, doi:10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., 1975b: Theory of energy-balance climate models. J. Atmos. Sci., 32, 20332043, doi:10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., 1984: The small ice cap instability in diffusive climate models. J. Atmos. Sci., 41, 33903395, doi:10.1175/1520-0469(1984)041<3390:TSICII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., and J. A. Coakley, 1979: Differences between seasonal and mean annual energy balance model calculations of climate and climate sensitivity. J. Atmos. Sci., 36, 11891204, doi:10.1175/1520-0469(1979)036<1189:DBSAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., R. F. Cahalan, and J. A. Coakley Jr., 1981: Energy balance climate models. Rev. Geophys., 19, 91–121, doi:10.1029/RG019i001p00091.

    • Search Google Scholar
    • Export Citation
  • North, G. R., J. G. Mengel, and D. A. Short, 1983: Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages. J. Geophys. Res., 88 (C11), 65766586, doi:10.1029/JC088iC11p06576.

    • Search Google Scholar
    • Export Citation
  • Ridley, J., J. Lowe, and D. Simonin, 2008: The demise of Arctic sea ice during stabilisation at high greenhouse gas concentrations. Climate Dyn., 30, 333341, doi:10.1007/s00382-007-0291-4.

    • Search Google Scholar
    • Export Citation
  • Ridley, J., J. Lowe, and H. T. Hewitt, 2012: How reversible is sea ice loss? Cryosphere, 6, 193198, doi:10.5194/tc-6-193-2012.

  • Rose, B. E. J., and J. Marshall, 2009: Ocean heat transport, sea ice, and multiple climate states: Insights from energy balance models. J. Atmos. Sci., 66, 28282843, doi:10.1175/2009JAS3039.1.

    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1969: A global climatic model based on the energy balance of the Earth–atmosphere system. J. Appl. Meteor., 8, 392400, doi:10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13B, 224230, doi:10.1111/j.2153-3490.1961.tb00079.x.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, doi:10.1175/JCLI3689.1.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and I. M. Held, 1979: Sensitivity of an energy balance climate model to variations in the orbital parameters. J. Geophys. Res., 84 (C8), 48254836, doi:10.1029/JC084iC08p04825.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., 1992: A toy model linking atmospheric thermal radiation and sea ice growth. J. Geophys. Res., 97 (C6), 9401–9410, doi:10.1029/92JC00695.

    • Search Google Scholar
    • Export Citation
  • Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke, 2011: Recovery mechanisms of Arctic summer sea ice. Geophys. Res. Lett.,38, L02707, doi:10.1029/2010GL045698.

  • Winton, M., 2006: Does the Arctic sea ice have a tipping point? Geophys. Res. Lett.,33, L23504, doi:10.1029/2006GL028017.

  • Winton, M., 2008: Sea ice–albedo feedback and nonlinear Arctic climate change. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 111–131.

  • Winton, M., 2011: Do climate models underestimate the sensitivity of Northern Hemisphere sea ice cover? J. Climate, 24, 39243934, doi:10.1175/2011JCLI4146.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1396 447 65
PDF Downloads 1030 312 48